GWAS: Genome-Wide Association Studies
MR: Mendelian Randomization
MSP: Multiple Sclerosis Progression
mtDNA-CN: Mitochondrial DNA Copy Number
SNP: Single Nucleotide Polymorphism
Introduction
Exposure: mtDNA-cn | GWAS summary statistics: GWAS catalogue | Reference paper: Chong et al. 2022
Sample size: 383,476
Ancestry: European
Outcome: MSP | GWAS summary statistics: International Multiple Sclerosis Genetics Consortium (IMSGC) | Reference paper: Harroud et al. 2023
Sample size: 12,584
Ancestry: European
Data Prepration
Number of total SNPs in exposure: 11,453,766 SNPs
Number of SNPs exposure with p-value < \(5\times10^{-8}\): 6,694 SNPs
Number of SNPs exposure after clumping: 66 SNPs
Number of total SNPs in outcome: 7,776,916 SNPs
Number of common variants between exposure and outcome: 62 SNPs
Number of SNPs after harmonization (action=2): 54 SNPs
A total of eight SNPs (rs10835540, rs12052715, rs17850455, rs2038480, rs289713, rs342293, rs72660908, rs8176645) were removed due to being palindromic.
Weakness of Instruments
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 29.54 39.92 56.07 91.96 108.06 441.00
The number of SNPs eliminated through the process of checking for weakness: 0 SNP
Initial MR
## id.exposure id.outcome outcome exposure method nsnp
## 1 xd1Q5E AOkvNF outcome exposure MR Egger 54
## 2 xd1Q5E AOkvNF outcome exposure Weighted median 54
## 3 xd1Q5E AOkvNF outcome exposure Inverse variance weighted 54
## 4 xd1Q5E AOkvNF outcome exposure Simple mode 54
## 5 xd1Q5E AOkvNF outcome exposure Weighted mode 54
## b se pval
## 1 -0.06515392 0.18192535 0.7216917
## 2 -0.06021617 0.11394908 0.5971884
## 3 -0.01181587 0.08002757 0.8826210
## 4 -0.03408639 0.24885219 0.8915700
## 5 -0.13223047 0.17563767 0.4548656
## id.exposure id.outcome outcome exposure method Q
## 1 xd1Q5E AOkvNF outcome exposure MR Egger 36.58355
## 2 xd1Q5E AOkvNF outcome exposure Inverse variance weighted 36.69013
## Q_df Q_pval
## 1 52 0.9480921
## 2 53 0.9570435
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 xd1Q5E AOkvNF outcome exposure 0.001424528 0.004363427 0.7453792
MR-PRESSO Test
## $`Main MR results`
## Exposure MR Analysis Causal Estimate Sd T-stat
## 1 beta.exposure Raw -0.01181587 0.06658499 -0.1774554
## 2 beta.exposure Outlier-corrected NA NA NA
## P-value
## 1 0.8598271
## 2 NA
##
## $`MR-PRESSO results`
## $`MR-PRESSO results`$`Global Test`
## $`MR-PRESSO results`$`Global Test`$RSSobs
## [1] 38.22615
##
## $`MR-PRESSO results`$`Global Test`$Pvalue
## [1] 0.9568
RadialMR Test
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) -0.01181590 0.06658498 -0.1774560 0.8591502
## Iterative -0.01181590 0.06658498 -0.1774560 0.8591502
## Exact (FE) -0.01190537 0.08002775 -0.1487656 0.8817386
## Exact (RE) -0.01188969 0.06802169 -0.1747927 0.8619086
##
##
## Residual standard error: 0.832 on 53 degrees of freedom
##
## F-statistic: 0.03 on 1 and 53 DF, p-value: 0.86
## Q-Statistic for heterogeneity: 36.68996 on 53 DF , p-value: 0.9570454
##
## No significant outliers
## Number of iterations = 2
## [1] "No significant outliers"
Standardized Residuals
## integer(0)
Cook’s Distance
“In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. In a practical ordinary least squares analysis, Cook’s distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it would be good to be able to obtain more data points. It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977” (Refernce).
Potential Outliers and Influential SNPs
## rs10749636 rs11085147 rs11553699 rs5745582 rs6105852 rs62641680 rs4814776 rs156355 rs3766744 rs1760940 rs7705526
MR Analysis After Deleting Outliers and Influential SNPs
## id.exposure id.outcome outcome exposure method nsnp
## 1 xd1Q5E AOkvNF outcome exposure MR Egger 43
## 2 xd1Q5E AOkvNF outcome exposure Weighted median 43
## 3 xd1Q5E AOkvNF outcome exposure Inverse variance weighted 43
## 4 xd1Q5E AOkvNF outcome exposure Simple mode 43
## 5 xd1Q5E AOkvNF outcome exposure Weighted mode 43
## b se pval
## 1 -0.099655757 0.23410418 0.6725602
## 2 -0.063269624 0.13167989 0.6308858
## 3 -0.066336669 0.09551918 0.4873779
## 4 -0.001375637 0.24308226 0.9955115
## 5 -0.095233755 0.20215017 0.6400043
## id.exposure id.outcome outcome exposure method Q
## 1 xd1Q5E AOkvNF outcome exposure MR Egger 15.14136
## 2 xd1Q5E AOkvNF outcome exposure Inverse variance weighted 15.16567
## Q_df Q_pval
## 1 41 0.9999253
## 2 42 0.9999549
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 xd1Q5E AOkvNF outcome exposure 0.0008211561 0.005267441 0.8768826
Sensitivity Analyses With MendelianRandomization Package
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 43
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW -0.066 0.096 -0.254, 0.121 0.487
## ------------------------------------------------------------------
## Residual standard error = 0.601
## Residual standard error is set to 1 in calculation of confidence interval when its estimate is less than 1.
## Heterogeneity test statistic (Cochran's Q) = 15.1657 on 42 degrees of freedom, (p-value = 1.0000). I^2 = 0.0%.
## F statistic = 79.1.
## Method Estimate Std Error 95% CI P-value
## Simple median -0.038 0.138 -0.309 0.232 0.780
## Weighted median -0.063 0.134 -0.327 0.200 0.637
## Penalized weighted median -0.063 0.134 -0.327 0.200 0.637
##
## IVW -0.066 0.096 -0.254 0.121 0.487
## Penalized IVW -0.066 0.096 -0.254 0.121 0.487
## Robust IVW -0.066 0.114 -0.289 0.156 0.560
## Penalized robust IVW -0.066 0.114 -0.289 0.156 0.560
##
## MR-Egger -0.100 0.234 -0.558 0.359 0.670
## (intercept) 0.001 0.005 -0.010 0.011 0.876
## Penalized MR-Egger -0.100 0.234 -0.558 0.359 0.670
## (intercept) 0.001 0.005 -0.010 0.011 0.876
## Robust MR-Egger -0.110 0.220 -0.540 0.321 0.618
## (intercept) 0.001 0.005 -0.009 0.011 0.832
## Penalized robust MR-Egger -0.110 0.220 -0.540 0.321 0.618
## (intercept) 0.001 0.005 -0.009 0.011 0.832
MR Steiger Test of Directionality
id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
---|---|---|---|---|---|---|---|
xd1Q5E | AOkvNF | exposure | outcome | 0.0089096 | 0.0012437 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
Other MR Methods
## MR-RAPS method
## $beta.hat
## [1] -0.0666348
##
## $beta.se
## [1] 0.09715311
##
## $beta.p.value
## [1] 0.4927925
##
## $naive.se
## [1] 0.09653342
##
## $chi.sq.test
## [1] 15.1635
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 -0.06663480 0.09715311
## 2 FALSE huber -0.06734012 0.09967724
## 3 FALSE tukey -0.06677293 0.09967718
## 4 TRUE l2 -0.06663370 0.09715582
## 5 TRUE huber -0.06734012 0.09967743
## 6 TRUE tukey -0.06677290 0.09967738
##
## MR-Lasso method
##
## Number of variants : 43
## Number of valid instruments : 43
## Tuning parameter : 0.2158568
## ------------------------------------------------------------------
## Exposure Estimate Std Error 95% CI p-value
## exposure -0.066 0.096 -0.254, 0.121 0.487
## ------------------------------------------------------------------
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 43
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC -0.067 0.096 0.484 [-0.255,0.121]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 43
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW -0.067 0.097 -0.257, 0.122 0.487 512.422
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 43
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE -0.095 0.192 -0.471, 0.281 0.620
## ------------------------------------------------------------------
Introduction
Exposure: MSP | GWAS summary statistics: International Multiple Sclerosis Genetics Consortium (IMSGC) | Reference paper: Harroud et al. 2023
Sample size: 12,584
Ancestry: European
Outcome: mtDNA-cn | GWAS summary statistics: GWAS catalogue | Reference paper: Chong et al. 2022
Sample size: 383,476
Ancestry: European
Data Prepration
Number of total SNPs in exposure: 7,776,916 SNPs
Number of SNPs exposure with p-value < \(5\times10^{-5}\): 356 SNPs
Number of SNPs exposure after clumping: 87 SNPs
Number of total SNPs in outcome: 11,453,766 SNPs
Number of common variants between exposure and outcome: 87 SNPs
Number of SNPs after harmonization (action=2): 87 SNPs
Weakness of Instruments
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.50 17.21 18.25 18.86 19.76 32.90
The number of SNPs eliminated through the process of checking for weakness: 0 SNP
Initial MR
## id.exposure id.outcome outcome exposure method nsnp
## 1 nURK4f T2q0Df outcome exposure MR Egger 87
## 2 nURK4f T2q0Df outcome exposure Weighted median 87
## 3 nURK4f T2q0Df outcome exposure Inverse variance weighted 87
## 4 nURK4f T2q0Df outcome exposure Simple mode 87
## 5 nURK4f T2q0Df outcome exposure Weighted mode 87
## b se pval
## 1 0.005811470 0.009729050 0.5518739
## 2 -0.005626420 0.006612471 0.3948360
## 3 -0.001397526 0.004472366 0.7546756
## 4 -0.021834722 0.016511154 0.1895337
## 5 -0.020182425 0.014857264 0.1778828
## id.exposure id.outcome outcome exposure method Q
## 1 nURK4f T2q0Df outcome exposure MR Egger 88.44734
## 2 nURK4f T2q0Df outcome exposure Inverse variance weighted 89.17241
## Q_df Q_pval
## 1 85 0.3775598
## 2 86 0.3860270
## id.exposure id.outcome outcome exposure egger_intercept se
## 1 nURK4f T2q0Df outcome exposure -0.0006964723 0.0008343435
## pval
## 1 0.4061958
MR-PRESSO Test
## $`Main MR results`
## Exposure MR Analysis Causal Estimate Sd T-stat
## 1 beta.exposure Raw -0.001397526 0.004472366 -0.3124802
## 2 beta.exposure Outlier-corrected NA NA NA
## P-value
## 1 0.7554321
## 2 NA
##
## $`MR-PRESSO results`
## $`MR-PRESSO results`$`Global Test`
## $`MR-PRESSO results`$`Global Test`$RSSobs
## [1] 91.25201
##
## $`MR-PRESSO results`$`Global Test`$Pvalue
## [1] 0.389
RadialMR Test
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) -0.001397539 0.004472371 -0.3124829 0.7546735
## Iterative -0.001397539 0.004472371 -0.3124829 0.7546735
## Exact (FE) -0.001478970 0.004392249 -0.3367226 0.7363260
## Exact (RE) -0.001481647 0.004598976 -0.3221688 0.7481066
##
##
## Residual standard error: 1.018 on 86 degrees of freedom
##
## F-statistic: 0.1 on 1 and 86 DF, p-value: 0.755
## Q-Statistic for heterogeneity: 89.16685 on 86 DF , p-value: 0.3861855
##
## No significant outliers
## Number of iterations = 2
## [1] "No significant outliers"
Standardized Residuals
## integer(0)
Cook’s Distance
“In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. In a practical ordinary least squares analysis, Cook’s distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it would be good to be able to obtain more data points. It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977” (Refernce).
Potential Outliers and Influential SNPs
## rs116923174 rs140619129 rs62456804 rs74841864 rs78154308 rs55855256 rs2309466 rs12150092 rs76382044 rs143351343 rs59782807
MR Analysis After Deleting Outliers and Influential SNPs
## id.exposure id.outcome outcome exposure method nsnp
## 1 nURK4f T2q0Df outcome exposure MR Egger 76
## 2 nURK4f T2q0Df outcome exposure Weighted median 76
## 3 nURK4f T2q0Df outcome exposure Inverse variance weighted 76
## 4 nURK4f T2q0Df outcome exposure Simple mode 76
## 5 nURK4f T2q0Df outcome exposure Weighted mode 76
## b se pval
## 1 -0.011424357 0.010405963 0.27582231
## 2 -0.010549743 0.006372131 0.09780147
## 3 -0.009826027 0.004673517 0.03551030
## 4 -0.023368650 0.016816998 0.16876632
## 5 -0.022205338 0.017238043 0.20165073
## id.exposure id.outcome outcome exposure method Q
## 1 nURK4f T2q0Df outcome exposure MR Egger 41.68274
## 2 nURK4f T2q0Df outcome exposure Inverse variance weighted 41.71229
## Q_df Q_pval
## 1 74 0.9991256
## 2 75 0.9993510
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 nURK4f T2q0Df outcome exposure 0.0001523749 0.00088636 0.8639769
Sensitivity Analyses With MendelianRandomization Package
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 76
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW -0.010 0.005 -0.019, -0.001 0.036
## ------------------------------------------------------------------
## Residual standard error = 0.746
## Residual standard error is set to 1 in calculation of confidence interval when its estimate is less than 1.
## Heterogeneity test statistic (Cochran's Q) = 41.7123 on 75 degrees of freedom, (p-value = 0.9994). I^2 = 0.0%.
## F statistic = 19.0.
## Method Estimate Std Error 95% CI P-value
## Simple median -0.011 0.006 -0.024 0.001 0.077
## Weighted median -0.011 0.006 -0.024 0.001 0.079
## Penalized weighted median -0.011 0.006 -0.024 0.001 0.079
##
## IVW -0.010 0.005 -0.019 -0.001 0.036
## Penalized IVW -0.010 0.005 -0.019 -0.001 0.036
## Robust IVW -0.009 0.004 -0.018 -0.001 0.029
## Penalized robust IVW -0.009 0.004 -0.018 -0.001 0.029
##
## MR-Egger -0.011 0.010 -0.032 0.009 0.272
## (intercept) 0.000 0.001 -0.002 0.002 0.864
## Penalized MR-Egger -0.011 0.010 -0.032 0.009 0.272
## (intercept) 0.000 0.001 -0.002 0.002 0.864
## Robust MR-Egger -0.011 0.008 -0.028 0.005 0.171
## (intercept) 0.000 0.001 -0.001 0.002 0.793
## Penalized robust MR-Egger -0.011 0.008 -0.028 0.005 0.171
## (intercept) 0.000 0.001 -0.001 0.002 0.793
MR Steiger Test of Directionality
id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
---|---|---|---|---|---|---|---|
nURK4f | T2q0Df | exposure | outcome | 0.1145236 | 0.0001213 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
Other MR Methods
## MR-RAPS method
## $beta.hat
## [1] -0.01011947
##
## $beta.se
## [1] 0.005008396
##
## $beta.p.value
## [1] 0.04333149
##
## $naive.se
## [1] 0.004871466
##
## $chi.sq.test
## [1] 41.58034
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 -0.010119467 0.005008396
## 2 FALSE huber -0.009637528 0.005136904
## 3 FALSE tukey -0.009791940 0.005137417
## 4 TRUE l2 -0.010120090 0.005011227
## 5 TRUE huber -0.009637872 0.005137795
## 6 TRUE tukey -0.009792268 0.005138371
##
## MR-Lasso method
##
## Number of variants : 76
## Number of valid instruments : 76
## Tuning parameter : 0.21849
## ------------------------------------------------------------------
## Exposure Estimate Std Error 95% CI p-value
## exposure -0.010 0.005 -0.019, -0.001 0.036
## ------------------------------------------------------------------
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 76
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC -0.010 0.005 0.035 [-0.019,-0.001]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 76
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW -0.010 0.005 -0.020, -0.001 0.036 156.690
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 76
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE -0.022 0.016 -0.054, 0.009 0.166
## ------------------------------------------------------------------