Metabolic Brain Disease (2022) 37:1175-1184
https://doi.org/10.1007/511011-022-00918-5

ORIGINAL ARTICLE q

Check for
updates

Downregulation of miR-185 is a common pathogenic event in 22q11.2
deletion syndrome-related and idiopathic schizophrenia

Hani Sabaie' - Jalal Gharesouran? - Mohammad Reza Asadi' - Sara Farhang®* - Noora Karim Ahangar’ -
Serge Brand® - Shahram Arsang-Jang’ - Saba Dastar® - Mohammad Taheri’® - Maryam Rezazadeh?

Received: 25 August 2021 / Accepted: 20 January 2022 / Published online: 25 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Schizophrenia (SCZ) is known as a complicated mental disease with an unknown etiology. The microdeletion of 22q11.2
is the most potent genetic risk factor. Researchers are still trying to find which genes in the deletion region are linked to
SCZ. MIR185, encoding microRNA (miR)-185, is present in the minimal 1.5 megabase deletion. Nonetheless, the miR-
185 expression profile and its corresponding target genes in animal models and patients with 22q11.2 deletion syndrome
(22q11.2DS) imply that more study is required about miR-185 and its corresponding downstream pathways within idiopathic
SCZ. The expression of hsa-miR-185-5p and its corresponding target gene, shisa family member 7 (SHISA7), sometimes
called CKAMP59, were evaluated in the peripheral blood (PB) samples of Iranian Azeri patients with idiopathic SCZ and
healthy subjects, matched by gender and age as control groups by quantitative polymerase chain reaction (qQPCR). Fifty
SCZ patients (male/female: 22/28, age (mean + standard deviation (SD)): 35.9 +5.6) and 50 matched healthy controls
(male/female: 23/27, age (mean + SD): 34.7 +5.4) were enrolled. The expression of hsa-miR-185-5p in the PB samples
from subjects with idiopathic SCZ was substantially lower than in that of control groups (posterior beta=-0.985, adjusted
P-value <0.0001). There was also a difference within the expression profile between female and male subgroups (posterior
beta=-0.86, adjusted P-value =0.046 and posterior beta=-1.015, adjusted P-value=0.004, in turn). Nevertheless, no sig-
nificant difference was present in the expression level of CKAMP59 between PB samples from patients and control groups
(adjusted P-value>0.999). The analysis of the receiver operating characteristic (ROC) curve suggested that hAsa-miR-185-5p
may correctly distinguish subjects with idiopathic SCZ from healthy people (the area under curve (AUC) value: 0.722).
Furthermore, there was a strong positive correlation between the expression pattern of the abovementioned genes in patients
with SCZ and healthy subjects (r=0.870, P<0.001 and r=0.812, P <0.001, respectively), indicating that this miR works as
an enhancer. More research is needed to determine if the Asa-miR-185-5p has an enhancer activity. In summary, this is the
first research to highlight the expression of the miR-185 and CKAMP59 genes in the PB from subjects with idiopathic SCZ.
Our findings suggest that gene expression alterations mediated by miR-185 may play a role in the pathogenesis of idiopathic
and 22q11.2DS SCZ. It is worth noting that, despite a substantial and clear relationship between CKAMP59 and hsa-miR-
185-5p, indicating an interactive network, their involvement in the development of SCZ should be reconsidered based on
the whole blood sample since the changed expression level of CKAMP59 was not significant. Further research with greater
sample sizes and particular leukocyte subsets can greatly make these results stronger.
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Introduction

Schizophrenia (SCZ) is a psychiatric disorder that impacts
a person believes, senses, and acts (Marder and Cannon,
2019). The symptoms fall into three categories: psychotic,
negative, and cognitive. Psychotic symptoms include hal-
lucinations, delusions, and thought disorders. Negative
symptoms such as reduced motivation, reduced feelings, and
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reduced speaking. Cognitive symptoms including difficulties
in attention, focus, and memory (Marder and Cannon 2019;
Patel et al. 2014). SCZ affects about 1% of people around the
globe. It is one of the leading 10 worldwide reasons for dis-
ability. According to twin and family studies, 80% of the risk
of SCZ can be clarified by genetic factors. Nevertheless, just
a few of these heritable factors are related to common single-
nucleotide variants connected with SCZ; each has a negli-
gible impact on risk. However, rare mutations can have a
greater influence on risk (Marder and Cannon 2019; Purcell
et al. 2014; Ripke et al. 2014). The most potent recognized
genetic risk factor is chromosomal region 22q11.2 deletion,
which triggers 22q11.2 deletion syndrome (22q11.2DS).
Since the symptoms of patients with idiopathic SCZ are
indistinguishable from 22q11.2DS-related SCZ, risk genes
for 22q11.2DS-related SCZ may also be entangled in idio-
pathic cases (Forstner et al. 2014; Earls et al. 2012). Roughly
one-third of 22q11.2DS patients will have SCZ in their
adulthood (Karayiorgou et al. 2010). 22q11.2 deletion dif-
fers in size. Most are 1.5 megabases (Mb) or 3 Mb and span
between 35 to 60 recognized genes, respectively (Edelmann
et al. 1999; Shaikh et al. 2000). Deletion size and severity
of 22q11.2DS phenotype are not correlated. This informa-
tion may indicate the substantial etiological significance of
the 1.5 Mb small deletion region. Various attempts were
administered by the genetic association to determine the
absent genes in the 1.5 Mb area that are responsible for the
higher risk for SCZ. MIR185 is one of the recognized genes
in this deletion region, which encodes microRNA (miR)-185.
(Karayiorgou et al. 2010).

MiR-185 is known as a thymus-expressed miR that
responds to stress (Belkaya et al. 2011). Patients of
22q11.2DS are somewhat diagnosed with hypoparathy-
roidism, cardiac anomalies, thymic hypoplasia, and/or dis-
abilities related to learning (Kobrynski and Sullivan 2007).
In some patients, the T helper cell may become altered, and
autoimmune disorders may become more recurring (Pili-
ero et al. 2004; Kanaya et al. 2006). Nonetheless, previous
literature outlined that T cell development is regulated by
transgenic expression of miR-185 when it targets various
mRNAs, including marginal zone B and B1 cell specific
Protein (Mzb1) (Belkaya et al. 2013). Shisa family member
7 (SHISA?7), also known as CKAMP59, is a validated tar-
get of hsa-miR-185-5p (Marques et al. 2012). CKAMP59
regulates long-term synaptic potentiation. This gene is a
major player in gamma-aminobutyric acid (GABA) neu-
rotransmitter regulation (Castellano et al. 2021). GABA
is considered the main inhibitory neurotransmitter inside
the central nervous system (CNS). GABA acts via two
subclasses of receptors, GABA , receptors (GABA Rs)
and GABAgRs (Sparrow et al. 2021). GABA,Rs are
ligand-gated ion channels, also called ionotropic receptors;
whereas GABAgRs are G protein-coupled receptors (also
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known as metabotropic receptors) (Sparrow et al. 2021).
The GABA is now considered an actor beyond the realm
of CNS, in contrast with the previously supposed role of
neuronal behavior regulator. Several studies also indicated
the existence of some elements of GABAergic signal-
ing within immune system cells. Aside from cell lines,
the presence of GABA,Rs was detected in several cells,
including B cells, T cells, macrophages, and dendritic in
rodents and humans alike. According to the mentioned
data, the same mechanism in neurons is responsible for the
modification of lymphocyte GABA R (Tian et al. 2004,
1999; Alam et al. 2006; Dionisio et al. 2011, 2013; Mendu
et al. 2012). Due to the direct role in regulating GABA ,R
at inhibitory synapses, CKAMP59 has arisen as an intrigu-
ing constituent of the family of Shisa while contrasting its
CKAMP counterparts (Castellano et al. 2021). However,
by considering the expression patterns of miR-185 and its
target genes in 22q11.2DS patients and animal models,
further investigation into the involvement of miR-185 and
the associated downstream pathways in idiopathic SCZ is
warranted.

The purpose of this study was to investigate the role
of hsa-miR-185-5p and its target gene CKAMP59 in SCZ
utilizing gene expression analysis in patients diagnosed
with idiopathic SCZ and controls.

Materials and methods
Participants and samples

This study is conducted within the framework of the
Azeri recent-onset acute phase psychosis survey (ARAS)
(Farhang et al. 2021). The study protocol was approved by
the ethical committee of Tabriz University of Medical Sci-
ences (IR.TBZMED.REC.1398.1232). Fifty first-episode
antipsychotic-naive adult SCZ patients and fifty age and
gender-matched healthy controls were enrolled. An expe-
rienced psychiatrist diagnosed first-episode SCZ patients
based on the Diagnostic and Statistical Manual of Men-
tal Disorders, 5th edition (DSM-5) criteria (Association
2013). 22q11.2 deletion syndrome, intellectual disability,
and substance use (except cigarette) were considered as
exclusion criteria. The Mini-International Neuropsychiat-
ric Interview (Sheehan et al. 1998) was utilized to assess
control subjects. For the control group, the existence of
pregnancy, psychiatric conditions, or systemic disorders
was considered as exclusion criteria. Furthermore, indi-
viduals who reported a significant mental disorder in a
first-degree family were excluded. Ten ml of PB was taken
after obtaining written informed consent from all partici-
pants and/or their caregivers.
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Expression assays

Total RNA was extracted from whole blood based on the
manufacturer’s procedure using the Hybrid-R™ Blood RNA
purification kit (GeneALL, Seoul, South Korea) and treated
with DNase I to remove DNA contamination. NanoDrop
was used to determine the amount and quality of isolated
RNA (Thermo Scientific, Wilmington, DE). The synthesis
of cDNA was done by the cDNA synthesis Kit (GeneALL)
according to the manufacturer’s instructions. The cDNA was
kept at -20 °C for further investigation. Table 1 contains
the primer sequences utilized in reverse transcription and
quantitative polymerase chain reaction (qPCR) reactions.
Internal controls hypoxanthine phosphoribosyl transferase
1 (HPRTI) and U6 were used to normalize mRNA and miR
levels, respectively. HPRTI was chosen because it has been
demonstrated as a suitable reference gene for SCZ studies
(Hwang et al. 2013; Chaumette et al. 2019; Asadzadeh Man-
jili et al. 2018). The qPCR was performed using the Step
OnePlus™ Real-Time PCR and the RealQ Plus2x Master
Mix (Ampligon, Odense, Denmark).

Statistical analysis

The data analysis was performed using the R v.4 software
packages brms, stan, pROC, and GGally. We examined the
expression level of hsa-miR-185-5p and CKAMPS59 in the
PB sample of healthy and diseased individuals.

The multiple Bayesian quantile regression model was
used to compare the relative expressions of hsa-miR-185-5p
and CKAMP59 between SCZ patients and healthy con-
trols. As relative expressions had a non-normal pattern of

Table 1 Sequences of primers used in reverse transcription (RT) and
qPCR reactions

Gene name Primer sequences

hsa-miR-185-5p RT primer: GTCGTATCCAGTGCAGGGTCC
GAGGTATTCGCACTGGATACGACTCAG
GAA
Forward primer: AATCGGCGTGGAGAGAAA
GGC
Reverse primer: GTCGTATCCAGTGCAGGGTCC

() RT primer: GTCGTATCCAGTGCAGGGTCC
GAGGTATTCGCACTGGATACGACAAAA
ATAT
Forward primer: GCTTCGGCAGCACATATACTA
AAAT
Reverse primer: CGCTTCACGAATTTGCGT
GTCAT

Forward primer: TGAAGACCCCCAACCTCG
ACTG
Reverse primer: TCCTTCTCGGCCAGCCTCTTG

Forward primer: AGCCTAAGATGAGAGTTC
Reverse primer: CACAGAACTAGAACATTGATA

CKAMP59

HPRTI

distribution, to parametrization of log-transformed depend-
ent variable (relative expressions) we used asymmetric
Laplace distribution. We used the asymmetric Laplace
distribution corresponding to quantile regression with loca-
tion (mu=0), scale (sigma=1) and asymmetry parameter
quantile (q=0.5). The default brms prior on sigma was
considered (student t). Variables and Sex*Group interaction
effects that were found to have a significant or borderline
p-value (p<0.1) in univariate data analysis were entered in
the multiple regression model. The final model was adjusted
for age and sex. Model with low value in Pareto smoothed
importance-sampling leave-one-out cross-validation (PSIS-
LOO) metric was preferred (Vehtari et al. 2015).

Gender and age effects were adjusted. The adjusted
P-values <0.05 were taken as significant. Additionally, the
expressions of the aforementioned genes were examined
across age groups and between males and females. Spear-
man correlation coefficients were used to assess the rela-
tionships between the study variables in both patients of
SCZ and healthy controls participants. A receiver operating
characteristic (ROC) curve analysis was used to determine
the diagnostic power of genes. The simulation was used to
examine the power for n, likelihood, and priors. Statistical
analyses were conducted using the RStan, loo, and brms
packages in the R 4.2 environment (Biirkner 2017).

Results
General demographic data

Fifty SCZ patients (male/female: 22/28) with age
(mean + standard deviation (SD)) of 35.9+5.6 and 50
healthy controls (male/female: 23/27) with age (mean + SD)
of 34.7+5.4, all with Turkish Azeri ethnic backgrounds,
were investigated.

Expression assays

The relative expression of hsa-miR-185-5p and CKAMP59
genes in SCZ patients and controls is depicted in Fig. 1.

The expression of hsa-miR-185-5p was suggestively
reduced in PB samples of SCZ cases compared with con-
trols (posterior beta=-0.985, adjusted P-value <0.0001).
Such decreased expression was found between male and
female subgroups too (posterior beta=-0.86, adjusted
P-value=0.046 and posterior beta=-1.015, adjusted
P-value =0.004, respectively Nonetheless, we did not find
a significant difference in the expression of CKAMP59
(adjusted P-value >0.999) in PB samples from the cases and
controls. The detailed data of relative expression of hsa-
miR-185-5p and CKAMPS59 are indicated in Tables 2 and
3, respectively.
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Fig.1 Expression of hsa-miR-185-5p and CKAMP59 in cases and nal controls U6 and HPRTI were used to normalize hsa-miR-185-5p
controls’ peripheral blood samples. Values are shown by gray dots. and CKAMP59 levels, respectively
The means of expression and the interquartile range are shown. Inter-

Table 2 Relative levels of
hsa-miR-185-5p in idiopathic
schizophrenia cases and
controls according to the
Bayesian quantile regression
model

Table 3 Relative levels of
CKAMPS59 in idiopathic
schizophrenia cases and
controls according to the
Bayesian quantile regression
model
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hsa-miR-185-5p Posterior Beta  SE Adjusted P-Value* 95% Crl for Beta
of (2(-dden)<

Total Group, Case vs. control -0.985 0.21 <0.0001 [-1.42, -0.57]
Sex, Male vs. Female -0.022 0.2 0.628 [-0.42, 0.35]
Age (years) -0.013 0.01 0.831 [-0.04, 0.02]
Group * Sex 0.02 0.35 0.611 [-0.67,0.7]

Male Case vs. control -0.86 0.28 0.046 [-1.45, -0.34]
Age -0.01 0.02 0.893 [-0.05, 0.03]

Female Case vs. control -1.015 0.25 0.004 [-1.53, -0.54]
Age -0.021 0.02 0.874 [-0.06, 0.02]

*Estimated from frequentist methods; Crl: Credible interval, £: Power transformation value estimated from
Box-cox or Yeo-Johnson methods

CKAMP59 Posterior Beta ~ SE Adjusted P-Value* 95% Crl for Beta
of (2(-dden)s
Total Group, Case vs. control 0.139 0.28 >0.999 [-0.45, 0.67]
Sex, Male vs. Female 0.145 0.3 0.942 [-0.48, 0.72]
Age (years) -0.007 0.02 0.577 [-0.05, 0.03]
Group * Sex -0.269 0.44 0.663 [-1.13,0.57]
Male Case vs. control -0.171 0.3 >0.999 [-0.78, 0.4]
Age 0.003 0.03 0.989 [-0.04, 0.05]
Female Case vs. control 0.198 0.24 0.604 [-0.31, 0.67]
Age -0.021 0.02 0.204 [-0.06, 0.02]

*Estimated from frequentist methods; Crl: Credible interval, £: Power transformation value estimated from
Box-cox or Yeo-Johnson methods
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According the power analysis, the simulation results and
95% CrI's indicated the consistency of results with n=50
and n= 100 per group, while the estimated minimum power
was about 68%.

Correlation analysis

The age of the participants was not correlated with the
expressions of hsa-miR-185-5p and CKAMP59. In both
patients of SCZ and healthy controls participants, the
expressed levels of the examined genes were correlated

significantly (r=0.870, P<0.001 and r=0.812, P <0.001,
respectively) (Fig. 2).

ROC curve analysis

We assessed the diagnostic power of hsa-miR-185-5p in
order to differentiate SCZ patients from healthy controls.
By considering the area under curve (AUC), we attained
the diagnostic power of 0.722 from the transcript levels of
hsa-miR-185-5p (Fig. 3).

Age CKAMP59 miR185
=1 Corr: -0.011 Corr: 0.013
1 Case: -0.012 Case: -0.003 |2
D
| Control: -0.017 Control: -0.027
Corr: 0.814***
o
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=
A
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=
)
%

25 30 35 40 45 -3 0

Fig.2 The distribution of variables is depicted on the diagonal. The correlation coefficients plus the significance level as stars are shown. *** is

significant correlation at P-value <0.001
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Discussion

As idiopathic SCZ is considered a multivariable disor-
der; hence, environmental and genetic factors influence
the susceptibility of this disease. Investigations on the
post-mortem brain tissues of humans have uncovered an
altered expression of miRs in SCZ patients (Forstner et al.
2013). Particularly, a substantial overlapping of dysregu-
lated miRs in post-mortem brain tissues of humans and the
altered miRs in prefrontal cortex (PFC) of a 22q11.2DS
mouse specimen have been found in previous studies
(Stark et al. 2008; Moreau et al. 2011). As a result, the
assumption that suggests the relevancy of the findings in
22q11.2DS with idiopathic SCZ is somewhat supported by
this discovery. Furthermore, identifying the target genes
that are affected by miRs dysregulation and the associ-
ated pathways will expand our knowledge of alteration in
genetic networks regulated by miRs and their contribution
to the pathophysiology of idiopathic SCZ and 22q11.2DS
(Forstner et al. 2013). In the present study, we evaluated
hsa-miR-185-5p and its target gene CKAMP59 expres-
sion in the PB of idiopathic SCZ patients and healthy
participants.
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Decreased levels of hsa-miR-185-5p were detected in
patients with SCZ compared to controls. The studies on
mouse models suggested that miR-185 in SCZ-related
brain regions is deemed as the top-scoring down-regulated
miR (Stark et al. 2008; Benetti et al. 2009; Forstner et al.
2014). To the best of our knowledge, the present study is
the first investigation of the miR-185 expression in PB of
patients with idiopathic SCZ. A drastic decrease in levels
of miR-185 expression in hippocampus and PFC regions of
Df(16)A +/—mice were corroborated in a previous study.
It was suggested that this decrease contributed to deficits in
dendritic complexity and spine development in hippocampal
neurons. Additionally, an approximate 20% decrease of miR-
185 expression within the hippocampus occurs due to the
Dgcr8 deficit, which encodes an RNA-binding moiety of
the ‘microprocessor’ complex and promotes behavioral
and neurological impairments related to the 22ql11.2
microdeletion. A previously unknown inhibitor, Mirta22
(miRNA target of the 22q11.2 microdeletion) which its
expression was higher in the prenatal brain and is situated
in the Golgi apparatus, is shown to be repressed by miR-185.
The lowered expression of miR-185 in Df(16)A(+/—) mice
brain regions leads to a sustained de-repression of Mirta22
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upon birth. This matter will give rise to structural alterations
in cognitive function as well as the hippocampus (Xu et al.
2013). An age-associated increase in long-term potentiation
has been declared in the hippocampus of Dgcr8+/—mice.
The loss of two miRs (miR-25 and miR-185), which target
the sarco (endo) plasmic reticulum Ca2 + ATPase (SERCA2),
are responsible for this elevation. Increased expression of
SERCA?2 was identified in the post-mortem brain of SCZ
patients (Earls et al. 2012). The reduced expression of miR-
185 was also shown in PB of individuals with 22q11DS
(Sellier et al. 2014; de la Morena et al. 2013). Our result is
in line with these findings. Additional evidence supporting
MIR185’s involvement in SCZ comes from the observation
that two of its validated targets, Cdc42 and RhoA (Liu et al.
2011), have altered expression levels in individuals with
SCZ (Hill et al. 2006; Ide and Lewis 2010).

We discovered no significant changes in CKAMP59
expression levels between patients with SCZ and healthy
controls in PB samples. Shisa family members are single-
pass transmembrane proteins with an N- and C-terminal
cysteine and proline-rich domain, respectively (Pei and
Grishin 2012). Shisa6-9 are known as Cystine-knot AMPAR
membrane proteins (CKAMP) (Farrow et al. 2015) on
account of the C-terminal existence of an AMPAR interact-
ing domain (von Engelhardt 2019). While other CKAMPs
are localized to glutamatergic synapses (von Engelhardt
et al. 2010; Klaassen et al. 2016; Peter et al. 2020), Shisa7
(CKAMP59) colocalizes exclusively with gephyrin and
GABA ,Rs in hippocampal neurons (Han et al. 2019), not
at excitatory synapses as previously reported (Schmitz et al.
2017). Shisa7 regulated the inhibitory transmission and traf-
ficking of GABA ,Rs without impairing excitatory synap-
tic transmission (Han et al. 2019, 2021; Wu et al. 2021).
Surprisingly, Shisa7 also affects the kinetics and pharma-
cological characteristics of GABA ,Rs. Indeed, CKAMP59
reduced the deactivation time constants of alp2y2 and
a2P3y2 receptors in heterologous cells, while Shisa7 KO
increased the decay time constant of GABAergic transmis-
sion in hippocampal neurons. Finally, Shisa7 enhanced diaz-
epam-induced potentiation of GABA ,Rs in heterologous
cells, while Shisa7 KO substantially decreased diazepam
effects in vivo (Han et al. 2019).

In contrast to the notion that miRs are repressive, our
correlation data between miR and mRNA revealed a sub-
stantial positive correlation rather than a negative correla-
tion. Though unconventional, the coexistence of negative
and positive miR-mRNA correlations has been observed
in several studies, implying the existence of a complex
network involving inhibition of miR targets (leading to
negative miR-mRNA correlations), as well as feed-for-
ward regulation triggered by common transcription factors
(leading to positive miR-mRNA correlations) (Chen et al.
2011; Chien et al. 2014; Friard et al. 2010; Diaz et al.

2015). As previously stated, hsa-miR-185-5p inhibits the
SHISA7 expression in human and murine neuroblastoma
cells (Marques et al. 2012). This finding is inconsistent
with our result. On the other hand, in line with our result,
another study showed that hsa-miR-3681-5p behaves as
a super-enhancer by recruiting alternative enhancer and
promoter, mediators, transcription factors, activators, and
RNA Pol II and that its enhancing function behaves as
an inhibitor of variable number tandem repeats (VNTRs)
activity in the 3' UTR of SHISA7 (Lee et al. 2020). Addi-
tional research is required to determine if hsa-miR-185-5p
acts as an enhancer.

Additionally, we assessed the diagnostic power for hsa-
miR-185-5p to differentiate idiopathic SCZ patients from
healthy participants and determined that it had a diagnostic
power of 0.722. Due to the study’s limited sample size,
these results should be used with care. If future research
confirms the current study’s results, the amount of Asa-
miR-185-5p transcription may be used as a marker for
idiopathic SCZ disease.

Conclusion

In conclusion, our study is the first to demonstrate the
expression of hsa-miR-185-5p and CKAMP59 in the PB
of idiopathic SCZ patients. Our findings suggest that
alterations in gene expression mediated by miR-185
may be a mechanistic connection between idiopathic
SCZ and 22q11.2DS. It is worth noting that, despite a
significant positive correlation between hsa-miR-185-5p
and CKAMP59, suggesting an interaction network, their
role in SCZ development should be reconsidered using
whole blood samples since the changed expression of
CKAMP59 was not strong enough to be significant. Addi-
tional research with bigger sample sizes and particular leu-
kocyte subsets may strengthen these results. Moreover,
evaluation of protein levels of CKAMP59 in patients and
controls would give better insight into the miR-185 medi-
ated function in SCZ.
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