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Abstract
Schizophrenia (SCZ) is known as a complicated mental disease with an unknown etiology. The microdeletion of 22q11.2 
is the most potent genetic risk factor. Researchers are still trying to find which genes in the deletion region are linked to 
SCZ. MIR185, encoding microRNA (miR)-185, is present in the minimal 1.5 megabase deletion. Nonetheless, the miR-
185 expression profile and its corresponding target genes in animal models and patients with 22q11.2 deletion syndrome 
(22q11.2DS) imply that more study is required about miR-185 and its corresponding downstream pathways within idiopathic 
SCZ. The expression of hsa-miR-185-5p and its corresponding target gene, shisa family member 7 (SHISA7), sometimes 
called CKAMP59, were evaluated in the peripheral blood (PB) samples of Iranian Azeri patients with idiopathic SCZ and 
healthy subjects, matched by gender and age as control groups by quantitative polymerase chain reaction (qPCR). Fifty 
SCZ patients (male/female: 22/28, age (mean ± standard deviation (SD)): 35.9 ± 5.6) and 50 matched healthy controls 
(male/female: 23/27, age (mean ± SD): 34.7 ± 5.4) were enrolled. The expression of hsa-miR-185-5p in the PB samples 
from subjects with idiopathic SCZ was substantially lower than in that of control groups (posterior beta = -0.985, adjusted 
P-value < 0.0001). There was also a difference within the expression profile between female and male subgroups (posterior 
beta = -0.86, adjusted P-value = 0.046 and posterior beta = -1.015, adjusted P-value = 0.004, in turn). Nevertheless, no sig-
nificant difference was present in the expression level of CKAMP59 between PB samples from patients and control groups 
(adjusted P-value > 0.999). The analysis of the receiver operating characteristic (ROC) curve suggested that hsa-miR-185-5p 
may correctly distinguish subjects with idiopathic SCZ from healthy people (the area under curve (AUC) value: 0.722). 
Furthermore, there was a strong positive correlation between the expression pattern of the abovementioned genes in patients 
with SCZ and healthy subjects (r = 0.870, P < 0.001 and r = 0.812, P < 0.001, respectively), indicating that this miR works as 
an enhancer. More research is needed to determine if the hsa-miR-185-5p has an enhancer activity. In summary, this is the 
first research to highlight the expression of the miR-185 and CKAMP59 genes in the PB from subjects with idiopathic SCZ. 
Our findings suggest that gene expression alterations mediated by miR-185 may play a role in the pathogenesis of idiopathic 
and 22q11.2DS SCZ. It is worth noting that, despite a substantial and clear relationship between CKAMP59 and hsa-miR-
185-5p, indicating an interactive network, their involvement in the development of SCZ should be reconsidered based on 
the whole blood sample since the changed expression level of CKAMP59 was not significant. Further research with greater 
sample sizes and particular leukocyte subsets can greatly make these results stronger.
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Introduction

Schizophrenia (SCZ) is a psychiatric disorder that impacts 
a person believes, senses, and acts (Marder and Cannon, 
2019). The symptoms fall into three categories: psychotic, 
negative, and cognitive. Psychotic symptoms include hal-
lucinations, delusions, and thought disorders. Negative 
symptoms such as reduced motivation, reduced feelings, and 

 *	 Mohammad Taheri 
	 Mohammad_823@yahoo.com

 *	 Maryam Rezazadeh 
	 Rezazadehm@tbzmed.ac.ir

Extended author information available on the last page of the article

/ Published online: 25 January 2022

Metabolic Brain Disease (2022) 37:1175–1184

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1 3

reduced speaking. Cognitive symptoms including difficulties 
in attention, focus, and memory (Marder and Cannon 2019; 
Patel et al. 2014). SCZ affects about 1% of people around the 
globe. It is one of the leading 10 worldwide reasons for dis-
ability. According to twin and family studies, 80% of the risk 
of SCZ can be clarified by genetic factors. Nevertheless, just 
a few of these heritable factors are related to common single-
nucleotide variants connected with SCZ; each has a negli-
gible impact on risk. However, rare mutations can have a 
greater influence on risk (Marder and Cannon 2019; Purcell 
et al. 2014; Ripke et al. 2014). The most potent recognized 
genetic risk factor is chromosomal region 22q11.2 deletion, 
which triggers 22q11.2 deletion syndrome (22q11.2DS). 
Since the symptoms of patients with idiopathic SCZ are 
indistinguishable from 22q11.2DS-related SCZ, risk genes 
for 22q11.2DS-related SCZ may also be entangled in idio-
pathic cases (Forstner et al. 2014; Earls et al. 2012). Roughly 
one-third of 22q11.2DS patients will have SCZ in their 
adulthood (Karayiorgou et al. 2010). 22q11.2 deletion dif-
fers in size. Most are 1.5 megabases (Mb) or 3 Mb and span 
between 35 to 60 recognized genes, respectively (Edelmann 
et al. 1999; Shaikh et al. 2000). Deletion size and severity 
of 22q11.2DS phenotype are not correlated. This informa-
tion may indicate the substantial etiological significance of 
the 1.5 Mb small deletion region. Various attempts were 
administered by the genetic association to determine the 
absent genes in the 1.5 Mb area that are responsible for the 
higher risk for SCZ. MIR185 is one of the recognized genes 
in this deletion region, which encodes microRNA (miR)-185. 
(Karayiorgou et al. 2010).

MiR-185 is known as a thymus-expressed miR that 
responds to stress (Belkaya et  al. 2011). Patients of 
22q11.2DS are somewhat diagnosed with hypoparathy-
roidism, cardiac anomalies, thymic hypoplasia, and/or dis-
abilities related to learning (Kobrynski and Sullivan 2007). 
In some patients, the T helper cell may become altered, and 
autoimmune disorders may become more recurring (Pili-
ero et al. 2004; Kanaya et al. 2006). Nonetheless, previous 
literature outlined that T cell development is regulated by 
transgenic expression of miR-185 when it targets various 
mRNAs, including marginal zone B and B1 cell specific 
Protein (Mzb1) (Belkaya et al. 2013). Shisa family member 
7 (SHISA7), also known as CKAMP59, is a validated tar-
get of hsa-miR-185-5p (Marques et al. 2012). CKAMP59 
regulates long-term synaptic potentiation. This gene is a 
major player in gamma‐aminobutyric acid (GABA) neu-
rotransmitter regulation (Castellano et al. 2021). GABA 
is considered the main inhibitory neurotransmitter inside 
the central nervous system (CNS). GABA acts via two 
subclasses of receptors, GABAA receptors (GABAARs) 
and GABABRs (Sparrow et  al. 2021). GABAARs are 
ligand-gated ion channels, also called ionotropic receptors; 
whereas GABABRs are G protein-coupled receptors (also 

known as metabotropic receptors) (Sparrow et al. 2021). 
The GABA is now considered an actor beyond the realm 
of CNS, in contrast with the previously supposed role of 
neuronal behavior regulator. Several studies also indicated 
the existence of some elements of GABAergic signal-
ing within immune system cells. Aside from cell lines, 
the presence of GABAARs was detected in several cells, 
including B cells, T cells, macrophages, and dendritic in 
rodents and humans alike. According to the mentioned 
data, the same mechanism in neurons is responsible for the 
modification of lymphocyte GABAAR (Tian et al. 2004, 
1999; Alam et al. 2006; Dionisio et al. 2011, 2013; Mendu 
et al. 2012). Due to the direct role in regulating GABAAR 
at inhibitory synapses, CKAMP59 has arisen as an intrigu-
ing constituent of the family of Shisa while contrasting its 
CKAMP counterparts (Castellano et al. 2021). However, 
by considering the expression patterns of miR-185 and its 
target genes in 22q11.2DS patients and animal models, 
further investigation into the involvement of miR-185 and 
the associated downstream pathways in idiopathic SCZ is 
warranted.

The purpose of this study was to investigate the role 
of hsa-miR-185-5p and its target gene CKAMP59 in SCZ 
utilizing gene expression analysis in patients diagnosed 
with idiopathic SCZ and controls.

Materials and methods

Participants and samples

This study is conducted within the framework of the 
Azeri recent-onset acute phase psychosis survey (ARAS) 
(Farhang et al. 2021). The study protocol was approved by 
the ethical committee of Tabriz University of Medical Sci-
ences (IR.TBZMED.REC.1398.1232). Fifty first-episode 
antipsychotic-naïve adult SCZ patients and fifty age and 
gender-matched healthy controls were enrolled. An expe-
rienced psychiatrist diagnosed first-episode SCZ patients 
based on the Diagnostic and Statistical Manual of Men-
tal Disorders, 5th edition (DSM-5) criteria (Association 
2013). 22q11.2 deletion syndrome, intellectual disability, 
and substance use (except cigarette) were considered as 
exclusion criteria. The Mini-International Neuropsychiat-
ric Interview (Sheehan et al. 1998) was utilized to assess 
control subjects. For the control group, the existence of 
pregnancy, psychiatric conditions, or systemic disorders 
was considered as exclusion criteria. Furthermore, indi-
viduals who reported a significant mental disorder in a 
first-degree family were excluded. Ten ml of PB was taken 
after obtaining written informed consent from all partici-
pants and/or their caregivers.
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Expression assays

Total RNA was extracted from whole blood based on the 
manufacturer’s procedure using the Hybrid-R™ Blood RNA 
purification kit (GeneALL, Seoul, South Korea) and treated 
with DNase I to remove DNA contamination. NanoDrop 
was used to determine the amount and quality of isolated 
RNA (Thermo Scientific, Wilmington, DE). The synthesis 
of cDNA was done by the cDNA synthesis Kit (GeneALL) 
according to the manufacturer’s instructions. The cDNA was 
kept at -20 °C for further investigation. Table 1 contains 
the primer sequences utilized in reverse transcription and 
quantitative polymerase chain reaction (qPCR) reactions. 
Internal controls hypoxanthine phosphoribosyl transferase 
1 (HPRT1) and U6 were used to normalize mRNA and miR 
levels, respectively. HPRT1 was chosen because it has been 
demonstrated as a suitable reference gene for SCZ studies 
(Hwang et al. 2013; Chaumette et al. 2019; Asadzadeh Man-
jili et al. 2018). The qPCR was performed using the Step 
OnePlus™ Real-Time PCR and the RealQ Plus2x Master 
Mix (Ampliqon, Odense, Denmark).

Statistical analysis

The data analysis was performed using the R v.4 software 
packages brms, stan, pROC, and GGally. We examined the 
expression level of hsa-miR-185-5p and CKAMP59 in the 
PB sample of healthy and diseased individuals.

The multiple Bayesian quantile regression model was 
used to compare the relative expressions of hsa-miR-185-5p 
and CKAMP59 between SCZ patients and healthy con-
trols. As relative expressions had a non-normal pattern of 

distribution, to parametrization of log-transformed depend-
ent variable (relative expressions) we used asymmetric 
Laplace distribution. We used the asymmetric Laplace 
distribution corresponding to quantile regression with loca-
tion (mu = 0), scale (sigma = 1) and asymmetry parameter 
quantile (q = 0.5). The default brms prior on sigma was 
considered (student t). Variables and Sex*Group interaction 
effects that were found to have a significant or borderline 
p-value (p < 0.1) in univariate data analysis were entered in 
the multiple regression model. The final model was adjusted 
for age and sex. Model with low value in Pareto smoothed 
importance-sampling leave-one-out cross-validation (PSIS-
LOO) metric was preferred (Vehtari et al. 2015).

Gender and age effects were adjusted. The adjusted 
P-values < 0.05 were taken as significant. Additionally, the 
expressions of the aforementioned genes were examined 
across age groups and between males and females. Spear-
man correlation coefficients were used to assess the rela-
tionships between the study variables in both patients of 
SCZ and healthy controls participants. A receiver operating 
characteristic (ROC) curve analysis was used to determine 
the diagnostic power of genes. The simulation was used to 
examine the power for n, likelihood, and priors. Statistical 
analyses were conducted using the RStan, loo, and brms 
packages in the R 4.2 environment (Bürkner 2017).

Results

General demographic data

Fifty SCZ patients (male/female: 22/28) with age 
(mean ± standard deviation (SD)) of 35.9 ± 5.6 and 50 
healthy controls (male/female: 23/27) with age (mean ± SD) 
of 34.7 ± 5.4, all with Turkish Azeri ethnic backgrounds, 
were investigated.

Expression assays

The relative expression of hsa-miR-185-5p and CKAMP59 
genes in SCZ patients and controls is depicted in Fig. 1.

The expression of hsa-miR-185-5p was suggestively 
reduced in PB samples of SCZ cases compared with con-
trols (posterior beta = -0.985, adjusted P-value < 0.0001). 
Such decreased expression was found between male and 
female subgroups too (posterior beta = -0.86, adjusted 
P-value = 0.046 and posterior beta = -1.015, adjusted 
P-value = 0.004, respectively Nonetheless, we did not find 
a significant difference in the expression of CKAMP59 
(adjusted P-value > 0.999) in PB samples from the cases and 
controls. The detailed data of relative expression of hsa-
miR-185-5p and CKAMP59 are indicated in Tables 2 and 
3, respectively.

Table 1   Sequences of primers used in reverse transcription (RT) and 
qPCR reactions

Gene name Primer sequences

hsa-miR-185-5p RT primer: GTC​GTA​TCC​AGT​GCA​GGG​TCC​
GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACT​CAG​
GAA​

Forward primer: AAT​CGG​CGT​GGA​GAG​AAA​
GGC​

Reverse primer: GTC​GTA​TCC​AGT​GCA​GGG​TCC​
U6 RT primer: GTC​GTA​TCC​AGT​GCA​GGG​TCC​

GAG​GTA​TTC​GCA​CTG​GAT​ACG​ACA​AAA​
ATAT​

Forward primer: GCT​TCG​GCA​GCA​CAT​ATA​CTA​
AAA​T

Reverse primer: CGC​TTC​ACG​AAT​TTG​CGT​
GTCAT​

CKAMP59 Forward primer: TGA​AGA​CCC​CCA​ACC​TCG​
ACTG​

Reverse primer: TCC​TTC​TCG​GCC​AGC​CTC​TTG​
HPRT1 Forward primer: AGC​CTA​AGA​TGA​GAG​TTC​

Reverse primer: CAC​AGA​ACT​AGA​ACA​TTG​ATA​
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Fig. 1   Expression of hsa-miR-185-5p and CKAMP59 in cases and 
controls’ peripheral blood samples. Values are shown by gray dots. 
The means of expression and the interquartile range are shown. Inter-

nal controls U6 and HPRT1 were used to normalize hsa-miR-185-5p 
and CKAMP59 levels, respectively

Table 2   Relative levels of 
hsa-miR-185-5p in idiopathic 
schizophrenia cases and 
controls according to the 
Bayesian quantile regression 
model

*Estimated from frequentist methods; CrI: Credible interval, ʎ: Power transformation value estimated from 
Box-cox or Yeo-Johnson methods

hsa-miR-185-5p Posterior Beta 
of (2(−ddct))ʎ

SE Adjusted P-Value* 95% Crl for Beta

Total Group, Case vs. control -0.985 0.21  < 0.0001 [-1.42, -0.57]
Sex, Male vs. Female -0.022 0.2 0.628 [-0.42, 0.35]
Age (years) -0.013 0.01 0.831 [-0.04, 0.02]
Group * Sex 0.02 0.35 0.611 [-0.67, 0.7]

Male Case vs. control -0.86 0.28 0.046 [-1.45, -0.34]
Age -0.01 0.02 0.893 [-0.05, 0.03]

Female Case vs. control -1.015 0.25 0.004 [-1.53, -0.54]
Age -0.021 0.02 0.874 [-0.06, 0.02]

Table 3   Relative levels of 
CKAMP59 in idiopathic 
schizophrenia cases and 
controls according to the 
Bayesian quantile regression 
model

*Estimated from frequentist methods; CrI: Credible interval, ʎ: Power transformation value estimated from 
Box-cox or Yeo-Johnson methods

CKAMP59 Posterior Beta 
of (2(−ddct))ʎ

SE Adjusted P-Value* 95% Crl for Beta

Total Group, Case vs. control 0.139 0.28  > 0.999 [-0.45, 0.67]
Sex, Male vs. Female 0.145 0.3 0.942 [-0.48, 0.72]
Age (years) -0.007 0.02 0.577 [-0.05, 0.03]
Group * Sex -0.269 0.44 0.663 [-1.13, 0.57]

Male Case vs. control -0.171 0.3  > 0.999 [-0.78, 0.4]
Age 0.003 0.03 0.989 [-0.04, 0.05]

Female Case vs. control 0.198 0.24 0.604 [-0.31, 0.67]
Age -0.021 0.02 0.204 [-0.06, 0.02]
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According the power analysis, the simulation results and 
95% CrI`s indicated the consistency of results with n = 50 
and n = 100 per group, while the estimated minimum power 
was about 68%.

Correlation analysis

The age of the participants was not correlated with the 
expressions of hsa-miR-185-5p and CKAMP59. In both 
patients of SCZ and healthy controls participants, the 
expressed levels of the examined genes were correlated 

significantly (r = 0.870, P < 0.001 and r = 0.812, P < 0.001, 
respectively) (Fig. 2).

ROC curve analysis

We assessed the diagnostic power of hsa-miR-185-5p in 
order to differentiate SCZ patients from healthy controls. 
By considering the area under curve (AUC), we attained 
the diagnostic power of 0.722 from the transcript levels of 
hsa-miR-185-5p (Fig. 3).

Fig. 2   The distribution of variables is depicted on the diagonal. The correlation coefficients plus the significance level as stars are shown. *** is 
significant correlation at P-value < 0.001
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Discussion

As idiopathic SCZ is considered a multivariable disor-
der; hence, environmental and genetic factors influence 
the susceptibility of this disease. Investigations on the 
post-mortem brain tissues of humans have uncovered an 
altered expression of miRs in SCZ patients (Forstner et al. 
2013). Particularly, a substantial overlapping of dysregu-
lated miRs in post-mortem brain tissues of humans and the 
altered miRs in prefrontal cortex (PFC) of a 22q11.2DS 
mouse specimen have been found in previous studies 
(Stark et al. 2008; Moreau et al. 2011). As a result, the 
assumption that suggests the relevancy of the findings in 
22q11.2DS with idiopathic SCZ is somewhat supported by 
this discovery. Furthermore, identifying the target genes 
that are affected by miRs dysregulation and the associ-
ated pathways will expand our knowledge of alteration in 
genetic networks regulated by miRs and their contribution 
to the pathophysiology of idiopathic SCZ and 22q11.2DS 
(Forstner et al. 2013). In the present study, we evaluated 
hsa-miR-185-5p and its target gene CKAMP59 expres-
sion in the PB of idiopathic SCZ patients and healthy 
participants.

Decreased levels of hsa-miR-185-5p were detected in 
patients with SCZ compared to controls. The studies on 
mouse models suggested that miR-185 in SCZ-related 
brain regions is deemed as the top-scoring down-regulated 
miR (Stark et al. 2008; Benetti et al. 2009; Forstner et al. 
2014). To the best of our knowledge, the present study is 
the first investigation of the miR-185 expression in PB of 
patients with idiopathic SCZ. A drastic decrease in levels 
of miR-185 expression in hippocampus and PFC regions of 
Df(16)A + / − mice were corroborated in a previous study. 
It was suggested that this decrease contributed to deficits in 
dendritic complexity and spine development in hippocampal 
neurons. Additionally, an approximate 20% decrease of miR-
185 expression within the hippocampus occurs due to the 
Dgcr8 deficit, which encodes an RNA-binding moiety of 
the ‘microprocessor’ complex and promotes behavioral 
and neurological impairments related to the 22q11.2 
microdeletion. A previously unknown inhibitor, Mirta22 
(miRNA target of the 22q11.2 microdeletion) which its 
expression was higher in the prenatal brain and is situated 
in the Golgi apparatus, is shown to be repressed by miR-185. 
The lowered expression of miR-185 in Df(16)A(+ / −) mice 
brain regions leads to a sustained de-repression of Mirta22 

Fig. 3   Receiver operating char-
acteristic (ROC) curve analysis. 
Hsa-miR-185-5p transcript lev-
els displayed diagnostic power 
of 0.722
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upon birth. This matter will give rise to structural alterations 
in cognitive function as well as the hippocampus (Xu et al. 
2013). An age-associated increase in long-term potentiation 
has been declared in the hippocampus of Dgcr8 + / − mice. 
The loss of two miRs (miR-25 and miR-185), which target 
the sarco (endo) plasmic reticulum Ca2 + ATPase (SERCA2), 
are responsible for this elevation. Increased expression of 
SERCA2 was identified in the post-mortem brain of SCZ 
patients (Earls et al. 2012). The reduced expression of miR-
185 was also shown in PB of individuals with 22q11DS 
(Sellier et al. 2014; de la Morena et al. 2013). Our result is 
in line with these findings. Additional evidence supporting 
MIR185’s involvement in SCZ comes from the observation 
that two of its validated targets, Cdc42 and RhoA (Liu et al. 
2011), have altered expression levels in individuals with 
SCZ (Hill et al. 2006; Ide and Lewis 2010).

We discovered no significant changes in CKAMP59 
expression levels between patients with SCZ and healthy 
controls in PB samples. Shisa family members are single-
pass transmembrane proteins with an N- and C-terminal 
cysteine and proline-rich domain, respectively (Pei and 
Grishin 2012). Shisa6-9 are known as Cystine-knot AMPAR 
membrane proteins (CKAMP) (Farrow et  al. 2015) on 
account of the C-terminal existence of an AMPAR interact-
ing domain (von Engelhardt 2019). While other CKAMPs 
are localized to glutamatergic synapses (von Engelhardt 
et al. 2010; Klaassen et al. 2016; Peter et al. 2020), Shisa7 
(CKAMP59) colocalizes exclusively with gephyrin and 
GABAARs in hippocampal neurons (Han et al. 2019), not 
at excitatory synapses as previously reported (Schmitz et al. 
2017). Shisa7 regulated the inhibitory transmission and traf-
ficking of GABAARs without impairing excitatory synap-
tic transmission (Han et al. 2019, 2021; Wu et al. 2021). 
Surprisingly, Shisa7 also affects the kinetics and pharma-
cological characteristics of GABAARs. Indeed, CKAMP59 
reduced the deactivation time constants of α1β2γ2 and 
α2β3γ2 receptors in heterologous cells, while Shisa7 KO 
increased the decay time constant of GABAergic transmis-
sion in hippocampal neurons. Finally, Shisa7 enhanced diaz-
epam-induced potentiation of GABAARs in heterologous 
cells, while Shisa7 KO substantially decreased diazepam 
effects in vivo (Han et al. 2019).

In contrast to the notion that miRs are repressive, our 
correlation data between miR and mRNA revealed a sub-
stantial positive correlation rather than a negative correla-
tion. Though unconventional, the coexistence of negative 
and positive miR-mRNA correlations has been observed 
in several studies, implying the existence of a complex 
network involving inhibition of miR targets (leading to 
negative miR-mRNA correlations), as well as feed-for-
ward regulation triggered by common transcription factors 
(leading to positive miR-mRNA correlations) (Chen et al. 
2011; Chien et al. 2014; Friard et al. 2010; Diaz et al. 

2015). As previously stated, hsa-miR-185-5p inhibits the 
SHISA7 expression in human and murine neuroblastoma 
cells (Marques et al. 2012). This finding is inconsistent 
with our result. On the other hand, in line with our result, 
another study showed that hsa-miR-3681-5p behaves as 
a super-enhancer by recruiting alternative enhancer and 
promoter, mediators, transcription factors, activators, and 
RNA Pol II and that its enhancing function behaves as 
an inhibitor of variable number tandem repeats (VNTRs) 
activity in the 3′ UTR of SHISA7 (Lee et al. 2020). Addi-
tional research is required to determine if hsa-miR-185-5p 
acts as an enhancer.

Additionally, we assessed the diagnostic power for hsa-
miR-185-5p to differentiate idiopathic SCZ patients from 
healthy participants and determined that it had a diagnostic 
power of 0.722. Due to the study’s limited sample size, 
these results should be used with care. If future research 
confirms the current study’s results, the amount of hsa-
miR-185-5p transcription may be used as a marker for 
idiopathic SCZ disease.

Conclusion

In conclusion, our study is the first to demonstrate the 
expression of hsa-miR-185-5p and CKAMP59 in the PB 
of idiopathic SCZ patients. Our findings suggest that 
alterations in gene expression mediated by miR-185 
may be a mechanistic connection between idiopathic 
SCZ and 22q11.2DS. It is worth noting that, despite a 
significant positive correlation between hsa-miR-185-5p 
and CKAMP59, suggesting an interaction network, their 
role in SCZ development should be reconsidered using 
whole blood samples since the changed expression of 
CKAMP59 was not strong enough to be significant. Addi-
tional research with bigger sample sizes and particular leu-
kocyte subsets may strengthen these results. Moreover, 
evaluation of protein levels of CKAMP59 in patients and 
controls would give better insight into the miR-185 medi-
ated function in SCZ.
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