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Abstract
The relationship between mitochondrial DNA copy number (mtDNA-CN) and multiple sclerosis (MS) progression remains 
unclear, as previous observational studies have reported conflicting results. This study aimed to clarify the association 
between mtDNA-CN and MS progression using a bidirectional two-sample Mendelian randomization (MR) approach. MR 
analyses were conducted using the latest summary statistics from genome-wide association studies (GWAS) on mtDNA-CN 
and MS progression. Single-nucleotide polymorphisms (SNPs) associated with mtDNA-CN were extracted from 383,476 
participants of European ancestry in the UK Biobank, while SNPs associated with MS severity were obtained from the 
International Multiple Sclerosis Genetics Consortium (IMSGC), comprising 12,584 cases of European ancestry. The inverse 
variance weighted (IVW) method was used as the primary analysis. Potential heterogeneity and pleiotropy were evaluated, 
and sensitivity analyses were performed to ensure the robustness of the results. The forward MR analysis using the IVW 
method revealed no significant association between mtDNA-CN and MS progression (P = 0.487). However, reverse MR 
analysis identified a causal association between MS progression and mtDNA-CN (β =  − 0.010, 95% CI =  − 0.019 to − 0.001, 
P = 0.036). No evidence of heterogeneity or horizontal pleiotropy was found in the analyses. Sensitivity analyses yielded 
consistent results. Our findings suggest that MS progression may causally influence mtDNA-CN, highlighting the crucial role 
of mitochondria in the pathophysiology of MS. However, further research is needed to confirm mtDNA-CN as a reliable bio-
marker and a deeper understanding of the molecular mechanisms is necessary to develop targeted therapeutic interventions.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease 
affecting the central nervous system (CNS). It is charac-
terized by progressive neuronal loss, primarily impacting 
young adults [1]. The pathogenesis of MS involves the dys-
regulation of both adaptive and innate immune cells target-
ing CNS autoantigens, leading to chronic neuroinflammation 
and subsequent neuronal damage [2]. Most patients initially 
present with a relapsing–remitting form of MS (RRMS), 

characterized by alternating episodes of acute demyelina-
tion and recovery. Over one to two decades, the majority 
of RRMS patients transition to a more severe condition 
marked by continuous neuronal degeneration without acute 
relapses, known as secondary progressive MS (SPMS). A 
smaller subset of patients, approximately 10 to 15%, exhibit 
primary progressive MS (PPMS), which is characterized by 
a steady progression of symptoms from the onset [3].

Aging is associated with a chronic inflammatory state, a 
notable risk factor for the onset and progression of chronic 
diseases such as MS [4]. This prolonged inflammatory state 
during aging can induce mitochondrial dysfunction [5]. 
Mitochondria contain their own genetic material, known 
as mitochondrial DNA (mtDNA), with multiple copies in 
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each cell. mtDNA plays crucial roles in cellular prolifera-
tion, maintaining mitochondrial membrane potential, regu-
lating apoptosis, managing oxidative stress, storing energy, 
and producing adenosine triphosphate (ATP) via oxidative 
phosphorylation (OXPHOS) [6, 7]. Alterations in mitochon-
drial function and content have been identified as potential 
contributors to neurodegeneration. Specifically, fluctuations 
in mitochondrial DNA copy number (mtDNA-CN) within 
biological samples have been observed during both the 
early and advanced stages of neurodegenerative diseases 
such as MS [8]. These fluctuations in mtDNA levels may 
underlie progressive bioenergetic deficits and impairments 
in the OXPHOS pathway, ultimately leading to changes in 
the respiratory capacity of neurons and the development of 
neurodegeneration [8, 9].

Previous observational investigations have reported an 
association between mtDNA-CN and MS, but their findings 
have been inconsistent [10–14]. These studies primarily 
utilized cross-sectional or case–control designs, which are 
vulnerable to confounding variables and reverse causation 
[15]. Furthermore, the directionality of the relationship 
between mtDNA-CN and MS progression remains unclear, 
as it is uncertain whether mitochondrial dysfunction con-
tributes to MS severity or if disease progression itself affects 
mtDNA-CN levels. To address these gaps, our study utilizes 
a bidirectional two-sample Mendelian randomization (MR) 
framework, leveraging large-scale genome-wide associa-
tion studies (GWAS) data, to evaluate the causal relation-
ship between these variables while minimizing the impact 
of confounding factors and reverse causation biases.

MR uses single-nucleotide polymorphisms (SNPs) iden-
tified through GWAS as instrumental variables. The SNP 
alleles are randomly allocated to individuals during gamete 
development prior to exposure to environmental confound-
ers. Consequently, MR can effectively mitigate the impacts 
of confounding variables, enabling the investigation of 
causal relationships and their directionality [16].

In the present study, we aimed to investigate the bidi-
rectional causal relationship between mtDNA-CN and MS 
progression using the MR method.

Methods

Study Design

We conducted bidirectional two-sample MR analyses to 
investigate mtDNA-CN and MS progression associations. 
For this purpose, we used the latest GWAS summary statis-
tics to assess the effect of exposure on the resulting outcome. 
The overall study design is outlined in the flowchart shown 
in Fig. 1.

The MR analysis was performed based on three assump-
tions. First, the SNPs are associated with the exposure. Sec-
ond, the SNPs are independent of confounders in the expo-
sure-outcome relationship. Third, the outcome is affected by 
the SNPs only through the exposure [16] (Fig. 2).

Data Sources

Genetic associations with mtDNA-CN were analyzed using 
data from 383,476 participants of European ancestry from 
the UK Biobank [17]. In this dataset, a total of 11,453,766 
SNPs were analyzed. mtDNA-CN estimates were derived 
using the AutoMitoC pipeline as described by Chong et al. 
[17], which provides the most comprehensive genetic evalu-
ation available to date. Summary statistics for MS sever-
ity were obtained from the International Multiple Sclerosis 
Genetics Consortium (IMSGC). The IMSGC conducted 
GWAS of age-based MS severity scores in 12,584 European 
ancestry cases to identify genetic variants potentially affect-
ing MS severity [18]. This dataset included approximately 
7,776,916 SNPs. Neurological disability was assessed using 
the Expanded Disability Status Scale (EDSS), an ordinal 
numerical scale that increases with neurodegenerative pro-
gression [19]. Aging effects were controlled by convert-
ing individual EDSS scores to the age-related MS severity 
(ARMSS) score, with disability ranked within age-specific 
strata [20]. Table 1 presents the detailed information on the 
utilized GWAS.

Genetic Instrument Selection

Instrumental variables (IVs) were defined as SNPs with 
genome-wide significant associations with the exposure. 
For mtDNA-CN, a threshold of P < 5 × 10–8 was selected 
to extract substantial SNPs. For genetic variation related to 
MS progression, the threshold was set at P < 5 × 10–5 to 
ensure a sufficient number of IVs. Adopting a P < 5 × 10–5 
threshold can increase the number of IVs and potentially the 
power of MR analysis, but it is crucial to implement strate-
gies to address the accompanying risks of weak instrument 
bias and pleiotropy [21, 22]. To assess instrument strength 
and validity, we calculated the F-statistic (F = β2/se2) to 
minimize weak instrument bias. IVs with an F-statistic less 
than 10 were considered weak and excluded from further 
analysis. Additionally, we employed different robust MR 
methods and performed sensitivity analyses to evaluate the 
robustness and consistency of our findings, as detailed in the 
following section.

Linkage disequilibrium (LD) was minimized by apply-
ing an r2 < 0.001 threshold within a clumping distance of 
10,000 kb window. We used ANNOVAR [23] to annotate 
the missing effect allele frequencies compared to the 1000 
Genomes Project data [24]. IVs were extracted based on the 
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outcome of interest, followed by clumping. The effect sizes 
for the instruments on the outcomes and exposures were 
harmonized to the same reference allele. Palindromic SNPs 
were excluded if present.

Mendelian Randomization Analysis

The inverse variance weighted (IVW) method was employed 
as the primary technique to estimate the causal relationship 
between exposure and outcome. To ensure the reliability and 
robustness of the results, several additional approaches were 
implemented, including Penalized IVW, Robust IVW, Penal-
ized Robust IVW, MR-Egger, Penalized MR-Egger, Robust 
MR-Egger, Penalized Robust MR-Egger, Simple Median, 
Weighted Median, Penalized Weighted Median, Simple 
Mode, Weighted Mode, Robust Adjusted Profile Score 

(RAPS), MR-Constrained Maximum Likelihood (MR-cML), 
Debiased IVW (dIVW), Mode-Based Estimation (MBE), 
and MR-Lasso [25].

Heterogeneity in the analysis was assessed using multi-
ple approaches, including Cochran’s Q statistic, Rucker’s Q 
statistic for MR-Egger, and the I2 index [26, 27]. Horizontal 
pleiotropy was evaluated through intercept tests using the MR-
Egger technique [28]. To detect and correct potential outliers, 
the Mendelian Randomization Pleiotropy RESidual Sum and 
Outlier (MR-PRESSO) test was applied by removing identified 
outliers [29, 30]. In addition, RadialMR was used to identify 
outliers with potential pleiotropy [31]. Cook’s distance and 
standardized residuals were also applied to determine influ-
ential or outlier SNPs [30]. Leave-one-out (LOO) analysis 
was performed, and the corresponding plot was depicted to 
evaluate the effect of potentially pleiotropic SNPs on causal 

Fig. 1   The forward (workflow A) and reverse (workflow B) Mende-
lian randomization designs assess the causal relationship between 
exposure and outcome. Abbreviations: GWAS, genome-wide asso-
ciation studies; IVW, inverse variance weighted; LOO, leave-one-out; 

MR, Mendelian randomization; MS, multiple sclerosis; mtDNA-CN, 
mitochondrial DNA copy number; SNP, single-nucleotide polymor-
phism
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estimates by sequentially excluding each SNP [26]. Funnel, 
forest, and scatter plots were created to identify directional 
pleiotropy, visualize genetic association, and inspect causal 
estimates for outliers [32]. Furthermore, the MR Steiger direc-
tionality test examined the causal direction [33].

All statistical analyses were conducted using R soft-
ware (V.4.3.2), with the packages “TwoSampleMR,” “MR-
PRESSO,” “MendelianRandomization,” “MRPracticals,” and 
“mr.raps.” The results were reported as β coefficients with cor-
responding 95% confidence intervals (CIs), and associations 
with P < 0.05 were considered statistically significant.

Results

Causal Association between Mitochondrial DNA 
Copy Number and Multiple Sclerosis Progression

A total of 6694 SNPs associated with mtDNA-CN were 
identified at genome-wide significance (P < 5 × 10−8). 
After filtering out 6628 SNPs due to high LD (r2 > 0.001) 
or based on the LD reference panel, 66 SNPs remained 
for the primary analysis. From the outcome of GWAS, 62 

Fig. 2   The three assumptions of Mendelian randomization analysis 
are (1) the relevance assumption, (2) the independence assumption, 
and (3) the exclusion-restriction assumption. Abbreviations: MR, 

Mendelian randomization; MS, multiple sclerosis; mtDNA-CN, mito-
chondrial DNA copy number; SNP, single-nucleotide polymorphism

Table 1   Features of genome-wide association studies

IMSGC, International Multiple Sclerosis Genetics Consortium; mtDNA-CN, mitochondrial DNA copy number; MSP, multiple sclerosis progres-
sion

Trait Resource Sample size (all/European) Covariates PubMed ID

mtDNA-CN UK biobank 395,718/383,476 Blood cell counts, 20 genetic principal components, age, sex, and chip 
type

35023831

MSP IMSGC 12,584/12,584 Sex, age at onset, date of birth, center, genotyping platform, and the first 
ten principal components

37380766
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SNPs were extracted. During harmonization, eight pal-
indromic SNPs (rs10835540, rs17850455, rs12052715, 
rs2038480, rs342293, rs289713, rs8176645, rs72660908) 
were excluded, leaving 54 SNPs for the initial analysis 
(see Supplementary File: Table S1). Moreover, the poor 
instrumental bias can be ignored for the F-statistic range 
of 29.54 to 441.00 (Supplementary File: Table S1). First, 
no satisfactory estimation was achieved; however, this was 
improved by identifying potential outliers using methods 
such as MR-PRESSO, RadialMR, standardized residuals, 
and Cook’s distance (see Supplementary File: Fig. S1).

Ultimately, with 43 SNPs serving as IVs, no significant 
evidence was found for an association between mtDNA-CN 
and MS progression (P > 0.05; see Fig. 3).

Rucker’s Q test (Q = 15.141, P = 0.999), Cochran’s Q test 
(Q = 15.166, P = 0.999), and the I2 statistic (I2 = 0.0%) indi-
cated no heterogeneity in the relationship between mtDNA-
CN and MS progression. Additionally, the MR-Egger inter-
cept test did not detect any evidence of horizontal pleiotropy 
(MR-Egger intercept = 0.001, P = 0.877). A visual exami-
nation of the scatter plot showing the association between 
exposure and outcome (Supplementary File: Fig. S2) along 
with a LOO plot (Supplementary File: Fig. S3) was con-
ducted to assess the impact of potential outliers. Funnel and 
forest plots were depicted for the causal association between 
mtDNA-CN and MS progression (Supplementary File: Figs. 
S4 and S5).

MR Steiger analysis confirmed the correct causal direc-
tion (P < 0.05). Furthermore, a scatter plot summarizing the 
results of multiple MR methods was used as a visual tool to 
compare and contrast the findings obtained from different 
MR analytical approaches (Fig. 4).

Causal Association between Multiple Sclerosis 
Progression and Mitochondrial DNA Copy Number

In the reverse MR analyses, we identified a total of 356 
SNPs associated with MS progression at genome-wide sig-
nificance (P < 5 × 10−5). After excluding 269 SNPs due to 
high LD (r2 > 0.001) or the LD reference panel, 87 SNPs 
were maintained for the main analysis. These 87 SNPs were 
extracted from the outcome GWAS. During harmonization, 
no SNPs were removed due to palindromic issues, result-
ing in the retention of all 87 SNPs for the initial analysis 
(see Supplementary File: Table S2). The instrumental vari-
able bias was statistically negligible, as indicated by the 
F-statistic ranging from 16.50 to 32.90 (see Supplementary 
File: Table S2). First, no estimation accuracy was achieved. 
However, this was improved by identifying potential outliers 
through the MR-PRESSO method, RadialMR, standardized 
residuals, and Cook’s distance (see Supplementary File: Fig. 
S6).

Our analysis identified a causal association between MS 
progression (N = 76 SNPs) and mtDNA-CN using IVW (β = 

Fig. 3   A forest plot displaying the results from various forward Mendelian randomization analyses. The outcomes are presented as β coefficients, 
with 95% confidence intervals (CIs)
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− 0.010, 95% CI =  − 0.019 to − 0.001, P = 0.036), provid-
ing evidence that MS progression leads to a reduction in 
mtDNA-CN. This result was consistent across various MR 
approaches, including Penalized IVW (β = − 0.010, 95% CI 
=  − 0.019 to − 0.001, P = 0.036), Robust IVW (β = − 0.009, 
95% CI =  − 0.018 to − 0.001, P = 0.029), Penalized Robust 
IVW (β = − 0.009, 95% CI =  − 0.018 to − 0.001, P = 0.029), 
RAPS (β = − 0.010, 95% CI =  − 0.020 to 0.000, P = 0.043), 
MR-cML (β = − 0.010, 95% CI =  − 0.019 to − 0.001, P = 
0.035), dIVW (β = − 0.010, 95% CI =  − 0.020 to − 0.001, 
P = 0.036), and MR-Lasso (β = − 0.010, 95% CI =  − 0.019 
to − 0.001, P = 0.036). However, the results were not statisti-
cally significant for other methods (P > 0.05) (see Fig. 5).

Rucker’s Q (Q = 41.683, P = 0.999), Cochran’s Q value 
(Q = 41.712, P = 0.999), and an I2 statistic of 0.0% all indi-
cated no heterogeneity in the analysis. An MR-Egger inter-
cept analysis (MR-Egger intercept = 0.0002, P = 0.864) 
showed no evidence of horizontal pleiotropy. Moreover, 
visual examinations of the scatter plot (Supplementary File: 
Fig. S7) and LOO plot (Supplementary File: Fig. S8) were 
conducted to assess the impact of outliers. Funnel and for-
est plots related to the causal association of MS progression 
with mtDNA-CN were also created (Supplementary File: 

Figs. S9 and S10). MR Steiger analysis confirmed the cor-
rect causal direction (P < 0.05). A scatter plot using vari-
ous MR methods was used to visualize and compare the 
findings from different MR approaches (Fig. 6). The MR 
analysis process and the findings are available publicly on 
GitHub: https://​hani-​sabaie.​github.​io/​mtDNA​CN-​MSP-​MR/​
MR-​Report.​html.

Discussion

In the present study, we investigated the causal role of 
mtDNA-CN in MS progression, as well as the reverse rela-
tionship using genetic correlation, two-sample, and bidi-
rectional MR methods. We found that mtDNA-CN had no 
causal association with MS progression. However, reverse 
MR analysis revealed that MS progression is associated with 
a decrease in mtDNA-CN levels.

mtDNA is more vulnerable to oxidative stress and inflam-
matory damage than nuclear DNA, leading to a higher inci-
dence of mutations and replication errors over time. This 
vulnerability is due to the absence of histones and inefficient 
DNA repair mechanisms in mtDNA [34]. The D-Loop, a 

Fig. 4   A scatter plot visualizing and comparing findings obtained from Mendelian randomization methods
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non-coding region of the mitochondrial genome responsible 
for its replication, is highly prone to mutations. Alterations 
in this region can lead to decreased mtDNA-CN [35]. A 
recent study using next-generation sequencing of the mito-
chondrial genome has observed a more significant number 
of mutations in D-Loop in MS patients compared to healthy 
individuals [36]. Damage to mtDNA may trigger mecha-
nisms that increase mtDNA-CN to protect the mitochondrial 
genome and preserve normal function [37, 38]. However, 
excessive mtDNA damage can decrease mtDNA-CN, result-
ing in mitochondrial dysfunction [37, 39]. Evidence from 
cell models suggests that reduced mtDNA-CN is associated 
with decreased mitochondrial protein expression, dimin-
ished respiratory enzyme activity, and changes in cellular 
morphology, highlighting the link between mtDNA-CN and 
mitochondrial dysfunction [40]. Our findings suggest that 
decreased mtDNA-CN is likely a consequence of impaired 
mitochondrial function in patients with MS. Although direct 
experimental evidence specifically elucidating the causal 
pathways between MS progression and reduced mtDNA-CN 
is currently limited, several plausible biological mechanisms 
based on established pathophysiological processes in MS 
may account for this observation. One possible explanation 
is that chronic inflammation and progressive demyelination 
in MS trigger a cascade of cellular and metabolic changes, 
leading to the redistribution of ion channels, an increase in 
Na+/K+-ATPase activity and higher ATP consumption. In 

response, mitochondria may undergo adaptive changes to 
balance the energy supply and demand [41]. Concurrently, 
the prolonged inflammatory state of the disease generates an 
environment of oxidative stress resulting from the release of 
ROS by activated macrophages and microglia [42], as well 
as increased glutamate release due to neuronal injury [41]. 
Furthermore, tumor necrosis factor-alpha (TNF-α) impairs 
the OXPHOS process through calcium-regulated mecha-
nisms [41]. Oxidative stress and excitotoxicity resulting from 
neuronal damage lead to progressive mitochondrial impair-
ment, including mtDNA alterations, increased heteroplasmy, 
dysfunctions in OXPHOSP subunits, and altered mitochon-
drial transport [43, 44]. These mitochondrial modifications 
result in decreased ATP production, impairing the Na+/K+-
ATPase. This triggers Na+ accumulation within the neuronal 
cytoplasm, which activates the Na+/Ca2+ channel. Increased 
intracellular Ca2+ initiates an apoptotic cascade, ultimately 
leading to neuronal death, Wallerian degeneration, and irre-
versible neurological impairment [43]. While prior studies 
have not specifically quantified the direct impact of MS pro-
gression on mtDNA-CN, our interpretation aligns with the 
broader understanding of mitochondrial involvement in MS 
pathogenesis. Further mechanistic investigations are needed 
to more precisely characterize the causal relationships.

Mitochondrial dynamics, particularly mtDNA-CN, dis-
play substantial tissue-specific variations that can influence 
disease mechanisms and progression. A recent study has 

Fig. 5   A forest plot of various reverse Mendelian randomization methods. The results are presented as β coefficients with an equivalent confi-
dence interval (CI) of 95%
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demonstrated considerable variations in mtDNA-CN across 
different tissues in both humans and mice, with up to 50-fold 
differences in humans and 200-fold in mice [45]. The study 
quantified mtDNA-CN in thousands of samples, revealing 
significant tissue-specific and inter-individual differences 
[45]. Given the multisystem involvement of MS, including 
both the immune and central nervous systems, the tissue-
specific contributions of mtDNA alterations warrant careful 
consideration. Measurements of mtDNA-CN in peripheral 
blood reflect systemic mitochondrial function and oxidative 
stress, which may be influenced by immune cell activation 
and inflammation [10, 43]. Conversely, mtDNA-CN in cer-
ebrospinal fluid (CSF) and brain tissue may provide more 
direct insights into mitochondrial dysfunction within the 
CNS [14].

Observational studies are often subject to confound-
ing biases, making it challenging to establish causality. 
To our knowledge, this is the first study that used the MR 
approach to investigate the causal effect of MS progression 
on mtDNA-CN and vice versa. Previous observational stud-
ies have revealed controversial findings regarding mtDNA-
CN and MS severity. For instance, Leurs et al. [11] found 

a non-significant correlation between EDSS and mtDNA-
CN. Sedky et  al. [13] reported a negative relationship 
between EDSS and mtDNA-CN, which was not statistically 
significant.

Conversely, three observational studies reported a sig-
nificant correlation between decreased mtDNA-CN and 
MS progression, aligning with our results. Varhaug et al. 
[14] observed a significant inverse correlation between dis-
ease duration and mtDNA-CN. Al-Kafaji et al. [10] found 
that patients with disease durations exceeding 10 years had 
lower mtDNA-CN than those with shorter disease durations. 
López-Armas et al. [12] showed a linear correlation between 
mild to moderate disability in MS patients and mtDNA-CN. 
These findings suggest that mtDNA-CN could be a valuable 
biomarker for assessing MS progression. While mtDNA-CN 
provides insight into mitochondrial dysfunction, other bio-
markers, such as neurofilament light chain (NfL) [46] and 
glial fibrillary acidic protein (GFAP) [47], have been widely 
used to assess different pathological aspects of MS. NfL, 
which indicates neuroaxonal damage, and GFAP, a marker 
of astroglial activation, have both shown potential in tracking 
disease progression [46–48]. Integrating mtDNA-CN with 

Fig. 6   Comparison of different Mendelian randomization approaches. All methods indicate a negative relationship between multiple sclerosis 
progression and mitochondrial DNA copy number
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established biomarkers like NfL and GFAP may enhance 
our ability to track MS progression, as mtDNA-CN reflects 
mitochondrial health, NfL indicates neuroaxonal integrity, 
and GFAP highlights astroglial activation. Future studies 
should explore the combined utility of these biomarkers to 
provide a more comprehensive picture of MS pathophysiol-
ogy and disease monitoring. Moreover, decreased mtDNA-
CN has also been found in other neurodegenerative condi-
tions, including Alzheimer’s disease, Huntington’s disease, 
and Parkinson’s disease [8], indicating that reduced mtDNA-
CN may be a common feature across neurodegenerative dis-
orders, including MS.

Recent advancements in understanding mitochondrial 
dysfunction in neurodegenerative diseases, particularly MS, 
suggest novel avenues for preventing neuronal loss. Targeting 
mitochondrial pathways could provide new therapeutic strate-
gies [43]. Interventions aimed at addressing mitochondrial 
dysfunction could be integrated into current MS treatment 
regimens, particularly in progressive forms of the disease. 
Therapeutic strategies aimed at boosting mitochondrial func-
tion or reducing oxidative stress might complement exist-
ing immunomodulatory treatments [43]. mtDNA-CN holds 
promise within a personalized medicine framework, offer-
ing potential for stratifying MS patients based on their mito-
chondrial dysfunction and tailoring treatments accordingly. 
This approach could enable early intervention for patients at 
higher risk of rapid progression and facilitate targeted thera-
pies that mitigate mitochondrial damage, ultimately lead-
ing to more personalized and effective approaches for MS 
patients, thereby improving clinical outcomes.

While our study provides valuable insights, it is impor-
tant to acknowledge its limitations. First, it is essential to 
note that the GWAS data used were primarily derived from 
populations of European ancestry which limits the generaliz-
ability of our findings to non-European populations. Further 
research is needed to validate these findings in diverse popu-
lations to ensure that clinical applications, such as diagno-
sis and treatment strategies, are practical across all ethnic 
groups. Second, the use of GWAS data may be influenced by 
population stratification and relatedness issues. Third, while 
reverse causality in MR studies can be difficult to interpret 
and may not establish a clear causal pathway, additional 
experimental studies are needed to elucidate the underlying 
mechanisms through which MS progression might influence 
changes in mtDNA-CN. These additional studies could help 
determine whether the observed association reflects a direct 
causal relationship or arises from complex, multifactorial 
processes. Fourth, the use of a statistical threshold of P < 
5 × 10−5 when selecting genetic instruments associated with 
MS progression may heighten the risk of pleiotropy and 
weak instrument bias. To mitigate these potential concerns, 
we employed several approaches, including evaluating the 
F-statistic, utilizing robust MR techniques, and conducting 

sensitivity analyses. Finally, future studies with larger sam-
ple sizes from GWAS of MS progression could provide more 
valuable insights into the causal relationship.

Conclusion

This study highlights the potential link between mitochon-
drial dysfunction and the progression of MS, particularly 
through mtDNA-CN. Integrating tissue-specific analyses can 
enhance our understanding of mitochondrial contributions to 
MS progression and may provide more precise biomarkers 
for monitoring disease severity and therapeutic response. 
Further research is essential to validate the role of mtDNA-
CN as a reliable biomarker. Gaining deeper insights into 
underlying molecular mechanisms will be critical for devel-
oping targeted therapeutic interventions that could comple-
ment existing immunomodulatory therapies.
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