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ABSTRACT

RNA sequencing (RNA-seq) has undergone substantial advancements in recent decades and has emerged as a
vital technique for profiling the transcriptome. The transition from bulk sequencing to single-cell and spatial
approaches has facilitated the achievement of higher precision at cell resolution. It provides valuable biological
knowledge about individual immune cells and aids in the discovery of the molecular mechanisms that contribute
to the development of autoimmune diseases. Celiac disease (CeD) is an autoimmune disorder characterized by a
strong immune response to gluten consumption. RNA-seq has led to significantly advanced research in multiple
fields, particularly in CeD research. It has been instrumental in studies involving comparative transcriptomics,
nutritional genomics and wheat research, cancer research in the context of CeD, genetic and noncoding RNA-
mediated epigenetic insights, disease monitoring and biomarker discovery, regulation of mitochondrial func-
tions, therapeutic target identification and drug mechanism of action, dietary factors, immune cell profiling and
the immune landscape. This review offers a comprehensive examination of recent RNA-seq technology research

in the field of CeD, highlighting future challenges and opportunities for its application.

1. Introduction

Celiac disease (CeD) is a chronic inflammatory condition in the small
intestine caused by the consumption of gluten proteins found in wheat,
barley, and rye (Shewry, 2019). It causes symptoms such as abdominal
pain, diarrhea, and malnutrition and can also spread outside the in-
testines (Ferguson et al., 1993; Green, 2005). The diagnosis is based on
clinical, serological, and histopathological information from biopsies of
the proximal small intestine (Al-Toma et al., 2019). Patients often have
diminished or leveled intestinal villi, excessive growth of crypts, and
elevated levels of lymphocytes in the lamina propria and epithelial layer
(Sakula and Shiner, 1957; Ferguson and Murray, 1971; Marsh, 1988). A

strict, lifelong gluten-free diet is generally effective in the management
of CeD. CeD is an autoimmune disorder triggered by a strong immune
response to gluten, characterized by the presence of disease-specific
autoantibodies, the destruction of intestinal epithelial cells, and
typical autoimmune genetics involving the dominant influence of
human leukocyte antigen (HLA) genes (Sollid and Jabri, 2013; Sollid
and Jabri, 2005). In CeD, CD4 T cells, which are responsive to gluten,
interact with B cells and CD8 T cells (Jabri and Sollid, 2017). The
participation of B cells, which relies on support from CD4 T cells, results
in the generation of antibodies to Transglutaminase 2 (TG2). It is
noteworthy that the involvement of B cells will create an amplification
mechanism for the T cells. This amplification process will favor peptides
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that are effective substrates for TG2 as T-cell epitopes. Altogether, these
findings indicate that the immune response against gluten by T cells
needs to reach a specific threshold to cause disease. CD4+ T cells play a
crucial role in the transformation of intraepithelial cytotoxic T lym-
phocytes (IE-CTLs) into effector T cells. However, the epithelium re-
leases signals, such as IL-15 and nonclassical MHC class I molecules, that
contribute to tissue destruction. These signals control tissue-resident
CD8 T cells and tissue damage, enabling CTLs to specifically eliminate
damaged tissue cells that have reduced their MHC class I molecules. The
factors required to activate this program in CeD appear to be sustained
by gluten exposure (Jabri and Sollid, 2017).

Since its inception in 2005 (Margulies et al., 2005), high-throughput
sequencing has enabled us to gain a comprehensive understanding of
molecular-level life processes and conduct in-depth investigations to
unravel the genome and transcriptome. RNA sequencing (RNA-seq),
particularly single-cell RNA-seq (scRNA-seq), is a crucial component of
high-throughput sequencing. It offers valuable biological insights into
individual immune cells and helps uncover the molecular mechanisms
underlying the development of autoimmune diseases (Nagafuchi et al.,
2022). Hence, RNA-seq could provide indispensable knowledge for the
study and management of CeD.

2. Progress in RNA-seq technologies

RNA-seq is a widely used tool in biological research for differential
gene expression analysis (DGEA) (Emrich et al.,, 2007; Lister et al.,
2008). This method involves extracting RNA, enriching or depleting
mRNA, synthesizing complementary DNA (cDNA), and preparing a
sequencing library with adaptor ligation. The library is then sequenced
using a high-throughput platform such as Illumina, resulting in 10-30
million reads per sample. The computational steps include aligning and/
or assembling reads; quantifying, filtering, and normalizing the data;
and performing statistical modeling to identify significant changes
(Stark et al., 2019). Initial RNA-seq studies produced DGE data using
samples of bulk tissue (Stark et al., 2019; Cloonan et al., 2008). RNA-seq
has expanded the scope of mRNA splicing and gene expression control
research by revealing noncoding RNAs and enhancer RNAs. (Wang
et al., 2008; Djebali et al., 2012; Morris and Mattick, 2014). It offers a
more comprehensive understanding of RNA biology and the tran-
scriptome compared to microarray-based techniques (Stark et al., 2019).
The majority of the progress in developing RNA-seq has focused on
Mlumina short-read sequencing instruments. However, recent advance-
ments in long-read RNA-seq and direct RNA-seq (dRNA-seq) techniques
have enabled users to address inquiries that cannot be resolved using
Mlumina short-read technologies (Byrne et al., 2017; Garalde et al.,
2018; Smith et al., 2019). Table 1 provides an overview of the four main

Table 1
An overview of the four major sequencing platforms for RNA-seq.
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platforms used for RNA-seq. [llumina technology is currently the most
widely used platform for short-read RNA-seq. It produces extensive and
high-quality data that accurately measure the quantitative expression
levels of the entire transcriptome (Leinonen et al., 2010).

3. Long-read cDNA RNA-seq and dRNA-seq

Long-read cDNA sequencing and dRNA-seq are becoming popular
substitutes for short-read sequencing, allowing users to acquire
enhanced data at the isoform level. Long-read technologies, such as
those offered by Pacific Biosciences (PacBio) and Oxford Nanopore
(ONT), enable the sequencing of entire individual RNA molecules as
single molecules following their conversion to cDNA. This approach
overcomes the limitations associated with short-read methods (Sharon
et al., 2013; Cartolano et al., 2016; Oikonomopoulos et al., 2016). Long-
read platforms offer the benefits of minimizing ambiguity in mapping
sequence reads, detecting longer transcripts, and capturing a greater
number of individual transcripts, resulting in a more comprehensive
representation of isoform diversity (Engstrom et al., 2013). Neverthe-
less, long-read platforms presently experience reduced throughput and
increased error rates in comparison to short-read platforms, which re-
stricts their sensitivity and specificity for specific applications (Stark
et al., 2019). ONT has developed a method called dRNA-seq (Jain et al.,
2016; Jain et al., 2018), which enables the sequencing of RNA without
the need for modification, cDNA synthesis, or PCR amplification
(Garalde et al., 2018). This approach has the potential to overcome the
limitations associated with the traditional method of sequencing mRNA.
In this method, the library preparation from RNA includes a series of
steps for ligating two adaptors. Initially, a duplex adaptor with an oligo
(dT) overhang is attached and ligated to the RNA polyadenylation (poly
(A)) tail, followed by an optional reverse-transcription process that en-
hances sequencing capacity. The second ligation step connects the pre-
loaded sequencing adaptors containing the motor protein necessary
for driving sequencing. Once prepared, the library is suitable for MinION
sequencing, where RNA is sequenced directly from the 3’ poly(A) tail to
the 5’ cap (Stark et al., 2019). Initial research has shown that dRNA-seq
produces read lengths averaging around 1,000 bp and can achieve
maximum lengths exceeding 10 kb (Garalde et al., 2018; Workman
et al.,, 2019; Weirather et al., 2017). Long-read platforms possess the
capability to identify isoforms that are not detected by short-read
methods, especially in challenging-to-sequence yet medically signifi-
cant regions, although they presently incur higher experimental ex-
penses (Stark et al., 2019; Workman et al., 2019). The selection between
short-read and long-read platforms is contingent upon the particular
biological inquiry, as well as the computational resources at hand and
the desired level of sensitivity and specificity for the experiment.

Use Platform Company Template Sequencing Key applications
preparation technology
Short-read cDNA Mlumina Illumina Bridge PCR Sequencing by o Differential gene expression
sequencing synthesis e Whole transcriptome analysis
Ion Torrent 454 Life Sciences Emulsion PCR Sequencing by e Small RNA-seq
synthesis o Single-cell RNA-seq
e Spatial RNA-seq
e Nascent RNA and translatome analysis
e RNA structure and RNA-protein
interaction analysis
Long-read cDNA Single-molecule real-time Pacific Biosciences PCR Sequencing by o Identification of isoforms
sequencing sequencing (SMRT) synthesis e de novo transcriptome analysis
Nanopore sequencing Oxford Nanopore Without PCR Nanopore e Fusion and complex transcripts analysis
Technologies
Direct RNA Nanopore sequencing Oxford Nanopore Without PCR Nanopore Identification of isoforms
sequencing Technologies de novo transcriptome analysis

Fusion and complex transcripts analysis
Detecting ribonucleotide modifications
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4. RNA-seq data analysis

RNA-Seq is a versatile technology that may be employed for DGE,
variant calling, variant prioritization, quantitative gene expression
analysis, and validation of variants of unknown significance in the
genome. The availability of computational analysis tools for RNA-seq
has significantly increased over the past decade (Stark et al., 2019;
Conesa et al., 2016; Saeidian et al., 2020). The selection of a specific tool
should be determined by the intended purpose and the level of precision
required for its application. Fig. 1 and Table 2 displays the typical
procedure for analyzing RNA-seq data and the bioinformatics tools that
are commonly employed in RNA-seq data analysis.

5. Single-cell and spatial RNA-seq

Bulk RNA-seq has greatly enhanced our understanding of biology,
yet it faces challenges in accurately identifying distinct cell types and
maintaining spatial information; understanding the complexities of
biological systems requires both of these challenges. Techniques that
help users surpass bulk RNA are comparable to standard RNA-seq pro-
tocols, but they allow for the exploration of distinct inquiries. Single-cell
sequencing has revealed previously unidentified cell types, such as
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ionocyte cells, in extensively researched diseases that may be relevant to
the pathology of cystic fibrosis (Montoro et al., 2018). Spatially resolved
RNA-seq offers a valuable approach to gain a deeper understanding of
cell-cell interactions within solid tissues, including the expression of
fetal marker genes in adult heart tissue (Asp et al., 2017).

The process of scRNA-seq entails extracting individual cells from a
sample using diverse techniques, such as micropipetting, flow sorting, or
microfluidic isolation (Fig. 2A). Subsequently, the individual cells are
subjected to reverse transcription to generate cDNA, which is subse-
quently labeled with unique molecular identifiers (UMIs) for the pur-
pose of preparing RNA-seq libraries and conducting sequencing.
Discrete cell populations are identified using quality control, DGE
analysis, and 2D visualization (Stark et al., 2019; Tang et al., 2009;
Stegle et al., 2015; Svensson et al., 2018). Conversely, the workflow for
spatial RNA-seq (spatialomics) entails the utilization of spatial encoding
or in situ transcriptomics. Spatial encoding methods entail the use of
frozen tissue sections applied to microarray slides with oligoarrays or
densely packed beads coated with oligos (Fig. 2B). The mRNA molecules
disperse across the surface of the slide and bind to oligo-dT ¢cDNA syn-
thesis primers that contain UMIs and spatial barcodes. The spatialomics
data is subjected to computational analysis, which involves mapping
sequence reads to their corresponding spatial coordinates. This is

HISAT2
STAR
TopHat

Adding ReadGroups, mark
duplicates and sorting

SplitN'Trim and

GATK reassign mapping
quality
featureCounts CATK Base
HTSeq recalibration
GATK Variant calling

Fig. 1. Computational analysis of differential gene expression and variant calling. The analysis begins with preprocessing of the raw reads (FASTQ format). Four
common workflows, namely, 1A, 1B, 1C, and 2, are shown. Workflow 1 involves the utilization of aligners like HISAT2, STAR, or TopHat to map reads to specific
places in the genome using a reference genome. Subsequently, quantification tools like featureCounts or HTSeq are employed to assign reads to specific features
(Workflow 1A). Alternatively, workflow 1B starts by aligning the reads, thereafter utilizing StringTie to construct a transcriptome model based on the alignment
tools. Gene expression is ultimately represented through the utilization of tools such as edgeR, DESeq2, Ballgown, or Sleuth. These tools enable the generation of a
comprehensive list of genes or transcripts that exhibit differential expression and can be further analyzed and interpreted. Workflow 2 utilizes advanced alignment-
free tools, such as Kallisto and Salmon, to simultaneously construct a transcriptome and measure abundance. The results generated by these tools are often subjected
to the same modeling process employed in workflow 1 to provide a compilation of genes or transcripts that exhibit differential expression. For variant calling via the
GATK pipeline (workflow 1C), duplicate reads are identified and labeled, and then, variations are detected and subjected to filtering. Created with BioRender.com.
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Table 2
Description of bioinformatic tools that are commonly employed in RNA-seq data
analysis.

Tool Description Availability  Link Reference

FastQC A quality control Open- htt (Andrews,
tool that assesses source ps://Www. 2010)
the quality of raw bioinformat
sequencing data, ics.babraha
including per-base m.ac.uk/pro
quality scores, GC jects/fastqe/
content, and
sequence
duplication levels.

Trimmomatic Used for read Open- http://www. (Bolger
trimming and source usadellab. etal,
adapter removal to org/cms/? 2014)
improve data page=tr
quality by immomatic
removing low-
quality bases and
adapter sequences.

HISAT2 A fast and accurate Open- https://daeh (Kim
aligner for mapping  source wankimlab. etal.,
RNA-seq reads to a github.io/hi 2019)
reference genome. sat2/

STAR A RNA-seq aligner Open- https://gith (Dobin
that performs source ub. etal.,
spliced alignment com/alexd 2013)
and is efficient for obin/STAR
detecting novel
splice junctions.

TopHat An aligner that Open- https://ccb. (Kim
identifies splice source jhu.edu/ etal,
junctions and aligns software/ 2013)
RNA-seq reads to a tophat/inde
reference genome. x.shtml

Kallisto A Open- https://pach (Bray
pseudoalignment- source terlab.gith etal,
based tool that ub.io/ 2016)
quantifies kallisto/
transcript
abundances
without full
alignment to the
genome.

Salmon Salmon estimates Open- https:// (Patro
transcript-level source combine-lab. et al.,
abundances using github.io/sa 2017)
lightweight Imon/
alignment-free
methods.

StringTie Assembles Open- https://ccb. (Kovaka
transcripts and source jhu.edu/s etal,
estimates their oftware/s 2019)
abundances from tringtie/
RNA-seq data.

featureCounts ~ Counts the number Open- https://sub (Liao
of reads that map to  source read.sourc etal.,
genomic features eforge.net 2013)
(e.g., genes, exons) /featureCo
for differential unts.html
expression analysis.

HTSeq Assigns reads to Open- https://htse (Anders
genomic features source q.readthe et al.,
for gene expression docs.io/e 2014)
quantification. n/master/

edgeR A statistical Open- https://bio (Robinson
package for source conductor.or etal,
identifying g/packages 2010)
differentially /release/bio
expressed genes c/html/edge
between R.html
conditions.

DESeq2 Performs Open- https://bi (Love
differential source oconductor. et al.,
expression analysis org/packag 2014)
by modeling count es/release/
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Table 2 (continued)

Tool Description Availability ~ Link Reference
data and bioc/html/
accounting for DESeq2.html
library size
differences.

Ballgown A tool for analyzing ~ Open- http (Frazee
differential source S://WWW. et al.,
expression at the bioconduc 2015)
transcript level. tor.org/pac

kages/rele
ase/bioc

/html/ball
gown.html

Sleuth Provides statistical Open- https://pach (Pimentel
methods for source terlab.gith et al.,
differential ub.io/ 2017)
transcript sleuth/
expression analysis.

Picard A suite of tools for Open- https://bro Refer to
manipulating and source adinstitute. the
analyzing high- github.io/pi relevant
throughput card/ link
sequencing data.

GATK The Genome Open- https://gatk. (McKenna
Analysis ToolKkit, source broadinstitut et al.,
primarily used for e.org 2010)

variant calling but /hc/en-us
can also be applied

to RNA-seq data.

performed following the completion of DGE analysis. The purpose of this
analysis is to enable the visualization of differential spatial expression
(Chen et al., 2017; Rodriques et al., 2019; Crosetto et al., 2015; Moor
and Itzkovitz, 2017; Lein et al., 2017; Stahl et al., 2016).

The most commonly used platforms for single-cell and spatial RNA
sequencing are summarized in Table 3.

Computational methods are also rapidly advancing, and recent
guidelines have been established for scRNA-seq experimental design
(Luecken and Theis, 2019). Single-cell analysis workflows comprise a
collection of independently developed tools. To facilitate seamless data
transfer between these tools, single-cell platforms have been created
based on consistent data formats (Luecken and Theis, 2019). These
platforms serve as a foundation for constructing analysis pipelines.
Within command line platforms, Scater (McCarthy et al., 2017) and
Seurat (Butler et al., 2018) integrate easily with the wide range of
analysis tools available through the R Bioconductor project (Huber
et al., 2015). Scater excels in quality control and preprocessing, while
Seurat is widely recognized as the most popular and comprehensive
platform offering a vast array of tools and tutorials (Luecken and Theis,
2019). Notably, computational approaches that combine single-cell with
spatially resolved transcriptomics have emerged, leading to the devel-
opment of tools like cell2location (Kleshchevnikov et al., 2022) designed
to conduct joint analyses on multiple scRNA-seq and spatial tran-
scriptomic datasets.

6. Applications of RNA-seq in CeD research

The availability of genomic data, such as RNA-seq data, has greatly
increased as a result of the widespread use of high-throughput
sequencing technologies. RNA-seq, a crucial component of next-
generation sequencing, has led to significant advancements in
research on a wide range of domains, particularly in CeD research
(Fig. 3).

6.1. Comparative transcriptomics

RNA-seq has played a key role in revealing the unique transcriptome
profiles in individuals with CeD and various conditions. The significant
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Frozen tissue section on microarray slides
with oligo-arrays or densely packed beads
coated with oligos

oligo-dT
UMI

Spatial barcode ID,

Sequencing

Fig. 2. The process of single-cell RNA sequencing (scRNA-seq) and spatial RNA-seq. (A) ScCRNA-seq involves extracting individual cells from a sample using tech-
niques like flow sorting. These cells are then reverse transcribed to generate cDNA, which is labeled with unique molecular identifiers (UMIs), for RNA-seq libraries
and sequencing. Discrete cell populations are identified using quality control, differential gene expression analysis, and 2D visualization. (B) Spatial RNA-seq uses
spatial encoding, using frozen tissue sections on microarray slides with oligoarrays or densely packed beads coated with oligos. The data is then analyzed
computationally by mapping sequence reads to their corresponding spatial coordinates, enabling visualization of differential spatial expression. Created with BioR

ender.com.

Table 3
Summary of the most commonly used platforms for single-cell and spatial RNA
sequencing.

Technique Platforms Reference
Single-cell RNA Smart-Seq2 (Picelli et al., 2013)
sequencing Fluidigm C1 (Xin et al., 2016)
Drop-seq (Macosko et al., 2015)
inDrop-seq (Klein et al., 2015)
CEL-seq2 (Hashimshony et al.,

2016)

10x Genomics (Zheng et al., 2017)

Chromium

Seq-Well (Gierahn et al., 2017)
Spatial RNA sequencing Seq-FISH (Eng et al., 2019)

Slide-seq (Rodriques et al., 2019)

10x Genomics Visium
NanoString GeoMx
NanoString CosMx

(Vickovic et al., 2019)
(Merritt et al., 2020)
(He et al., 2022)

findings from comparative transcriptomics using RNA-seq analysis are
outlined in Table 4.

RNA-seq can elucidate the underlying mechanisms of duodenal
inflammation in individuals with common variable immunodeficiency
(CVID) and CeD by revealing their distinct transcriptome profiles. The

RNA and protein profiles of CVID patients with duodenal inflammation
and CeD exhibited notable differences. Although CVID, which is asso-
ciated with duodenal inflammation, and CeD share histological simi-
larities, they exhibit distinct RNA regulation (Kaarbg et al., 2023). In
addition, researchers have utilized RNA-seq to identify the genes and
pathways that are unique to environmental enteric dysfunction (EED),
despite the notable molecular similarities shared with celiac disease.
These include an increase in the expression of the DUOX2 and LCN2
genes, which are associated with the natural defense of the body against
microbes. Conversely, there was a decrease in the expression of metal-
lothioneins (MT family) and aldo-keto NADPH-dependent reduction
genes (AKR1C family), which play a role in detoxifying environmental
compounds (Haberman et al., 2021). Severe acute malnutrition (SAM)
enteropathy is characterized by immune activation, which leads to hy-
perplastic enteropathy. This condition is associated with specific alter-
ations in nutrient transport and xenobiotic metabolism. RNA-seq
analysis revealed slight overlap between SAM and pediatric Crohn’s
disease but not as much overlap as between SAM and CeD (Chama et al.,
2019). In another study, seven differentially expressed genes (DEGs)
common to both CeD and SARS-CoV-2 infection were identified, namely,
KLRG1, NLRP3, IRAK3, MAFB, CD79B, MBP, and DDIT4 (Nashiry et al.,
2021). These findings could help us understand the complex relationship
between COVID-19 and CeD (Nashiry et al., 2021). RNA-seq also
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Fig. 3. Applications of RNA sequencing (RNA-seq) in celiac disease research. RNA-seq has made great contributions to CeD research, including studies on
comparative transcriptomics, nutritional genomics and wheat research, cancer research in the context of CeD, genetic and noncoding RNA-mediated epigenetic
insights, disease monitoring and biomarker discovery, regulation of mitochondrial functions, therapeutic target identification and drug mechanism of action, dietary
factors, immune cell profiling and the immune landscape. Created with BioRender.com.

revealed distinct gene expression patterns in patients with eosinophilic
duodenitis (EoD) and CeD. EoD and CeD suppressed metabolic processes
and transporter activity in the duodenum, while CeD increased activity
in pathways associated with type 1 immunity and extracellular matrix
pathways (Shoda et al., 2023).

While RNA-seq has been widely used in comparative tran-
scriptomics, it’s important to consider the potential limitations associ-
ated with this approach. These include issues such as small sample size,
individual heterogeneity, diverse treatments among subjects, use of
older healthy controls for comparison, reliance on bulk biopsies rather
than single-cell separation, and inadequate data related to gestational
age, birth weight, and microbial information. It is imperative to address
these concerns by conducting research that incorporates age-matched
controls, explores advancements in single-cell separation technology,
and collects more comprehensive datasets. Furthermore, repeating
studies, relying on larger sample sizes, and implementing specific
treatment regimens are also crucial steps recommended for future
investigations.

6.2. Nutritional genomics and wheat research

Research using RNA sequencing has led to significant findings in
nutritional genomics and wheat research. A method for sequencing
alpha-gliadin transcripts, including the three main epitopes for CeD and
their variations, was developed using 454 RNA amplicon sequencing.
This method was used to evaluate developing grains on 61 distinct
durum wheat cultivars and accessions, creating a prescreening tool for

assessing the immunogenicity of CeD (Salentijn et al., 2013). Moreover,
wheat RNA-seq analysis revealed complete transcripts of gliadins, the
primary carriers of epitopes associated with CeD (Wang et al., 2017a).
This study employed transcriptomic and proteomic techniques to
investigate the expression and role of gliadin, yielding novel findings for
genetic and genomic investigations and guiding future research en-
deavors (Wang et al., 2017a). In another study, bulked segregant RNA-
Seq (BSR-seq) was used to identify the genetic defect responsible for a
recessive, low-prolamin mutation in diploid barley, aiming to create a
wheat variety with reduced gluten content (Moehs et al., 2019). BSR-seq
is a very effective approach that combines RNA-seq with bulked segre-
gant analysis (BSA). BSA is a technique that can be employed to detect
markers associated with a particular gene or genomic area by utilizing
two pools of DNA. Each pool, or bulk, comprises individuals who share
the same trait or genomic region but differ at unrelated regions (Lin
et al., 2021). BSR-seq is used for both profiling DGE and rapid gene/
quantitative trait loci (QTL) mapping (Wang et al., 2017b; Hao et al.,
2019). Additionally, RNA-seq identified protein compensation mecha-
nisms in the E82 RNAi wheat line and its wild type during grain filling,
revealing that inhibiting gliadin controls the production of seed storage
proteins in the grain through a complex system of potential transcription
factors (Marin-Sanz and Barro, 2022).

The PacBio third-generation DNA sequence analysis technology
provides a promising solution for overcoming the challenges associated
with second-generation sequencing of gliadin genes (Zhang et al., 2014).
It offers precise detection of transcribed mRNAs from these genes along
with retrieval of complete sequence information. By integrating third-
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Table 4
Key findings from comparative transcriptomics using RNA-seq analysis.
Conditions Main findings from Insights provided Reference
compared RNA-seq
CVID vs CeD Revealed distinct Understanding (Kaarbg
transcriptome profiles molecular differences et al., 2023)
and differences in RNA  between conditions
regulation despite with similar
histological similarities  presentations
EED vs CeD Identified genes/ Identifying condition- (Haberman
pathways unique to specific molecular et al., 2021)
EED like DUOX2/LCN2  signatures and
upregulation and pathways
metallothionein
downregulation
SAM vs Showed overlap Elucidating (Chama
Crohn’s between conditions. relationships and et al., 2019)
disease vs Identified alterationsin ~ commonalities between
CeD nutrient transport and SAM, Crohn’s disease,
xenobiotic metabolism and CeD
in SAM
SARS-CoV-2 Identified seven Providing molecular (Nashiry
infection differentially expressed  insights into link et al., 2021)
vs CeD genes common to both,  between COVID-19 and
providing clues about CeD
their interaction
EoD vs CeD Revealed distinct Understanding (Shoda
expression patterns differences in molecular et al., 2023)
between conditions in pathophysiology of EoD
metabolic processes and CeD

and pathways involved

CVID, common variable immunodeficiency; CeD, celiac disease; EED, environ-
mental enteric dysfunction; SAM, severe acute malnutrition; EoD, eosinophilic
duodenitis.

generation RNA sequencing with proteomic analysis and advanced
bioinformatics tools, it becomes possible to gain deeper insights into
complex gliadins as well as the resulting CeD epitopes present in bread
wheat. This integrated approach facilitates more thorough in-
vestigations into the role of gliadins while also supporting efforts to-
wards developing healthier varieties of wheat (Altenbach et al., 2010).

6.3. Cancer research in the context of CeD

Through the use of RNA-seq, two distinct molecular subtypes have
been consistently observed in a series of small bowel carcinomas asso-
ciated with CeDs. These subtypes are characterized by microsatellite
instability, immune and mesenchymal characteristics. The microsatel-
lite instability-immune subtype is likely associated with less aggressive
tumor behavior, while the mesenchymal subtype is associated with more
unfavorable tumor behavior (Rizzo et al., 2020). Moreover, functional
analyses revealed biological function categories related to cancer and
the inflammatory response (Rizzo et al., 2020). Patients with CeD may
show an increase in the frequency of abnormal cells; called intra-
epithelial intracellular CD (iCD)3+ surface CD (sCD)3-CD7+ CD56—, in
their duodenum; this disease is known as type Il refractory celiac disease
(RCDII) and is classified as low-grade lymphoma (Cellier et al., 1998).
Using high-dimensional single-cell and spatial technologies, it has been
shown that the RCDII exhibits significant variation in the abnormal cell
population, both within and between tumors (Dieckman et al., 2022).
This highlights the importance of developing individualized immune
profiles for personalized treatment. Furthermore, in another study,
RNA-seq was used to identify the gene drivers responsible for lympho-
magenesis associated with CeD. This discovery revealed potential tar-
gets for treatment (Cording et al., 2022).

RNA-seq has provided valuable insights into cancer research in the
context of CeD, but it is crucial to acknowledge the constraints of this
approach. The complexity and diversity of data obtained from RNA-seq
analysis can pose challenges in interpretation, potentially leading to
biases in results. Additionally, RNA-seq may not fully capture the
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intricacies of biological processes linked to cancer and inflammatory
responses. Additional omics methods and functional studies may be
necessary for a more comprehensive understanding of disease mecha-
nisms. To enhance its applicability in fields such as epigenetics and
proteomics, integrating information from various omics studies is
essential (Hong et al., 2020). For instance, an assay utilizing hyperactive
Tn5 transposase named Transposase-Accessible Chromatin using
sequencing (ATAC-seq) was created to identify accessible chromatin
regions and binding sites for transcription factors (Buenrostro et al.,
2013). Integrating ATAC-seq with RNA-seq enables us to clarify tran-
scription factor-targeted genes along with their transcripts (Hong et al.,
2020). Moreover, progress has been achieved in chromatin conforma-
tion capture analysis technology (Simonis et al., 2007) and its variations
like Capture Hi-C (Mifsud et al., 2015) for identifying chromatin struc-
ture as well as unknown interacting regions. When combined with
genomic methylation and chromatin accessibility analysis, RNA-seq
discloses the influence of epigenetic alterations on tumor heterogene-
ity providing insight into personalized treatment plans for cancer pa-
tients. Lately, the innovative technologies Cellular Indexing of
Transcriptomes and Epitopes by Sequencing (CITE-Seq) and CRISPR
droplet sequencing (CROP-Seq) integrate single-cell RNA sequencing
with cell phenotype research alongside CRISPR screening showing sig-
nificant potential for identifying tumor cell epitope protein indices while
also screening drug-resistant tumor cells (Zhang et al., 2021).

6.4. Genetic and noncoding RNA-mediated epigenetic insights

Interferon-gamma (IFNy)-induced genes of unknown expression
were found to be highly concentrated in autoimmune susceptibility loci,
specifically those associated with CeD (Molinie et al., 2014). Using RNA-
seq data, the discovery of a complex transcriptional connection between
CeD susceptibility genes and IFNy has provided new insights into the
mechanisms and pathways of CeD (Kumar et al., 2015). Moreover, it has
been shown that CeD is associated with 118 prioritized genes and 172
combinations of genes that are affected by these genes in trans. Sys-
tematic prioritization of candidate genes at disease loci has identified
TRAFD] as a key regulator of IFNy signaling in CeD (van der Graaf et al.,
2020). The analysis of gene expression profiles in cell types relevant to
the disease revealed tissue-specific biological functions. RNA-seq of
CD326+ epithelial cells from patients with CeD revealed distinct
expression patterns of 1194 genes in comparison to those of individuals
without CeD. Genes related to the plasma membrane, extracellular
exosomes, and the extracellular region were found to be significantly
more abundant in the epithelial cells of patients with CeD (Sowinska
et al., 2020). This discovery provides valuable knowledge about the
molecular mechanisms underlying the impairment of the epithelial
barrier in CeD. Additional research identified 112 expression quantita-
tive trait loci (eQTL) genes within 32 out of 42 non-HLA CeD loci
(Withoff et al., 2016). Approximately 10 % of these genes were classified
as regulatory RNAs. Examination of publicly available expression data
revealed that numerous cis-eQTL genes exhibited specificity for partic-
ular cell types. Cis-eQTL analysis gives priority to genes that are
commonly regarded as ’causal’ disease genes (Withoff et al., 2016).
However, the interpretation of these results is challenging due to the
influence of tissue composition and the context-specific effects of eQTLs.
Notably, among the 112 cis-eQTL genes, 13 are classified as long non-
coding RNAs (IncRNAs), which emphasizes their significance in the
development of CeD pathology (Withoff et al., 2016).

Whole-genome RNA sequencing was utilized to identify differen-
tially expressed IncRNAs (including those that are known, annotated, or
novel) in leukocytes from patients with CeD. In addition, novel IncRNA
regions, such as IFNG-R-49, were discovered in close proximity to
transcriptional enhancers in leukocytes, particularly superenhancers, as
opposed to regular enhancers (Aune et al., 2017). The genome contains
both previously identified and newly discovered IncRNA loci that are
located near genetic variants associated with autoimmune diseases, such
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as CeD (Aune et al.,, 2017). Genetic and environmental factors can
modify the function of enhancers, including the expression of IncRNAs.
This can lead to changes in cellular characteristics that contribute to the
risk and development of diseases (Aune et al., 2017). The Epigenome
Roadmap project detected RNA-seq signals in the genomic region of
Carlr, suggesting the presence of a human IncRNA that is similar to
mouse Carlr (Castellanos-Rubio et al., 2017). Elevated levels of the Carlr
transcript were observed in the cytoplasm of human CeD patient sam-
ples, along with increased expression of genes associated with the NF-kB
pathway (Castellanos-Rubio et al., 2017). Upon re-examination of the
raw transcriptomic data, it was discovered that there were dysregulated
long IncRNAs in the CeD cohort as well as altered expression of GATA6-
AS1 (Sosnovski et al., 2023). Moreover, researchers have discovered and
examined Inc13, a IncRNA associated with CeD. The small intestinal
biopsy samples of patients with CeD exhibited downregulation of Inc13
(Castellanos-Rubio et al., 2016). Lnc13 also influences the expression of
genes associated with inflammation in CeD (Castellanos-Rubio et al.,
2016). The following transcripts were found to be significantly enriched
in noncoding regions associated with CeD-associated single nucleotide
polymorphisms (SNPs): RP11-98D18.3, AL450992.2, RP11-509E16.1,
LINC00877, LUCATI1, RP11-430C7.4, CHRM3-AS2, AC007278.3,
AC008063.2, LINCO0861, CTC-378H22.2, RP3-395M20.8, and RP11-
234B24.4 (Tuomela et al., 2016). In addition, expression profiling and
SNP data indicated that Th17 cells, a subset of CD4+ cells that secrete
IL17, are involved in autoimmune diseases like CeD (Tuomela et al.,
2016). A lack of Th17 cells increases susceptibility to infections (Korn
et al.,, 2009). Another investigation revealed that 42 SNPs linked to
autoimmune diseases directly affect 53 noncoding RNA genes, including
IncRNAs and microRNAs (miRNAs) (Ricano-Ponce et al., 2016). The
noncoding genome plays a role in autoimmune diseases, and SNPs are
linked to functional regulatory elements. RNA-seq data provide a
comprehensive understanding of the transcriptome, highlighting the
superiority of RNA sequencing over conventional microarrays (Ricano-
Ponce et al., 2016).

A study using prediction tools and genome-wide association study
(GWAS) data identified 34 SNPs that affect miRNA binding sites in genes
related to CeD (de Almeida et al., 2018). The DEG-miRNA interaction
networks were also discovered using RNA-seq data, enhancing our un-
derstanding of the molecular and cellular interactions between CeD and
SARS-CoV-2 infection, aiding in therapeutic targeting and strategies
(Nashiry et al., 2021). A study revealed that miRNAs linked to CeD can
control gene expression in the small intestine, impacting immune and
metabolic processes (Tan et al., 2021b). Certain miRNAs, such as miR-
155-5p, disrupt genes influenced by genomic variants, contributing to
the abnormal CeD transcriptome, such as that of STATI (Tan et al.,
2021b). Furthermore, RNA-seq revealed numerous circulating miRNAs
that serve as early indicators of the development of CeD. A more detailed
analysis of these miRNAs is provided in the subsequent section.

Although RNA-seq has shown promise in evaluating genetic and
noncoding RNA-mediated epigenetic information, several limitations
need to be addressed. These include the difficulty in assigning functions
to certain genes, the need for further validation and exploration, and the
reliance on predicted interactions. Future research should focus on
conducting functional studies, improving the sensitivity and dynamic
range, addressing technical variability, and validating findings in larger
cohorts.

6.5. Disease monitoring and biomarker discovery

RNA-seq analysis of gluten-induced transcriptomic alterations,
persistent disease patterns in gluten-free patients, and gene transcript
levels associated with mucosal injury in CeD patients was used to
identify biomarkers and therapeutic targets for CeD (Dotsenko et al.,
2021). Another study identified specific gene expression patterns,
including those of CDH18, CXCL9, CXCL10, GBP5, IFI27, IFNG, and UBD,
in the small intestines of CeD patients, suggesting that specific biological
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pathways are involved in disease development (Banerjee et al., 2023;
Bragde et al., 2018). RNA-seq has also identified pathways and bio-
markers associated with active disease and mucosal recovery, with CeD
patients showing distinct innate immunity genes (IL12R, ITGAM, and
IGSF4) (Leonard et al., 2019). RNA-seq analysis of organoids revealed
distinct gene expression variations associated with the development of
CeD. The utilization of RNA-seq allowed for the identification of specific
gene expression patterns and the discovery of potential biomarkers
(Freire et al., 2019). The mucosa of individuals with active CeD
exhibited a newly identified immune response and cell adhesion genes,
such as IL37, CCL25, MUC6, CLDN18, and CCL24 (Freire et al., 2019).
Interestingly, an RNA-seq study revealed that stabilized whole blood is
not an appropriate sample for clinical diagnosis of CeD based on indi-
vidual genes. Nevertheless, the possibility of utilizing a gene expression
panel focused on specific pathways for diagnostic purposes is worth
exploring, although additional research is necessary (Bragde et al.,
2020).

Noncoding RNAs could also serve as early indicators of CeD. RNA-
seq was used to detect miRNAs in the bloodstream and investigate
their potential as biomarkers for CeD research. Prior to the diagnosis of
CeD, the expression of certain miRNAs, namely, miR-21-3p, miR-374a-
5p, miR-144-3p, miR-500a-3p, miR-486-3p, let-7d-3p, let-7e-5p, and miR-
3605-3p, exhibited alterations. A diet free of gluten restored the
expression of miRNAs, including miR-150-5p, miR-150-3p, miR-1246,
miR-342-3p, miR-375-3p, and let-7a-5p, to normal levels (Tan et al.,
2021a). Moreover, the serum miRNAs of individuals with CeD and those
who were fed a gluten-free diet (GFD) were subjected to sequencing. The
adoption of a GFD successfully normalized the dysregulated levels of
miRNAs (miR-192-5p, miR-215-5p, and miR-125b-5p), which have the
potential to serve as biomarkers for this disease (Felli et al., 2022). The
fecal samples of CeD patients showed changes in miRNA and microbial
profiles as a result of following a gluten-free diet. There was a correla-
tion between the duration of GFD and the levels of miR-4533-3p and
miR-2681-3p (Francavilla et al., 2023). The study indicated that in-
dividuals with CeD exhibit distinct molecular patterns in their stool,
which could serve as biomarkers for identifying the efficacy of a GFD
(Francavilla et al., 2023). In relation to IncRNAs, GATA6-AS1 shows
promise as a biomarker and target for enhancing epithelial function and
promoting mucosal healing through the use of RNA-seq (Sosnovski et al.,
2023).

Disease monitoring and biomarker discovery studies may have
certain inherent limitations, including restricted sample sizes; inade-
quate investigations of environmental factors and the gut microbiota;
and the need for larger cohorts, validation, and functional studies.
Subsequent investigations should aim to overcome these limitations by
conducting studies on a larger scale, utilizing independent cohorts,
incorporating functional studies, and taking into account potential
confounding factors.

6.6. Regulation of mitochondrial functions

Recent studies have shed light on the intricate role of GATA6-AS1 in
regulating mitochondrial functions within epithelial cells (Sosnovski
et al., 2023). The GATA6-AS1 IncRNA interactome exhibited significant
enrichment of mitochondrial proteins, such as TGM2. TGM2 serves as an
autoantigen in CeD and is triggered in individuals with ulcerative colitis,
Crohn’s disease, or CeD. Further research has delved into the impacts of
suppressing GATA6-AS1 on the activation of TGM2, leading to a cascade
of effects on mitochondrial membrane potential, respiration, and me-
tabolites crucial for aerobic respiration, all of which are closely linked to
mucosal inflammation (Sosnovski et al., 2023). This connection un-
derscores the potential significance of GATA6-AS1 as a target for
modulating mitochondrial functions in epithelial cells, particularly
through its influence on TGM2 levels. Additionally, in a previous pilot
study, biopsies were taken from the distal duodenum of one CeD patient
and one control. Approximately 8,000 cells were analyzed from each
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sample. The results revealed that the cells grouped into 10 different
clusters, with a subset of cells from the CeD patient displaying high
mitochondrial content, which could potentially be a significant molec-
ular feature of the disease. However, it’s important to note that this
study is in its early stages and these findings are very preliminary (De
Leo et al., 2023).

These findings open up new avenues for understanding the intricate
interplay between mitochondrial function and the pathophysiology of
CeD, pointing towards a potential link between mitochondrial gene
expression and the underlying mechanisms of the disease. Larger-scale
validation studies, functional studies, and investigations of regulatory
networks involving IncRNAs could provide further insights into the
pathogenesis of CeD.

6.7. Therapeutic target identification and drug mechanism of action

Larazotide acetate (LA) is a synthetic peptide consisting of eight
amino acids. It is recognized for its ability to regulate tight junctions
(TJs) by closing open or “leaky” interepithelial junctions (Slifer et al.,
2021). LA has been found to be effective and safe in reducing gastro-
intestinal symptoms in patients who are undergoing a gluten challenge
(Hoilat et al., 2022). While it may not provide a complete cure for CeD, it
could potentially be used alongside the standard gluten-free diet as a
supportive rather than alternative treatment option (Hoilat et al., 2022).
Using RNA-seq, Jin et al. identified crucial signaling pathways that
exhibited differential expression in cells treated with LA (Jin et al.,
2020). These pathways influence the orientation of cells, progression of
the cell cycle, binding of Ras/Rho GTPases, activity of protein serine/
threonine kinases, and area of epithelial junctions. These findings pro-
vide insight into the molecular mechanism by which LA protects the
integrity of TJs and its potential application in significant gastrointes-
tinal diseases. Dotsenko et al. employed RNA-seq to assess the efficacy of
the TG2 inhibitor ZED1227 in safeguarding against gluten-induced in-
testinal harm in individuals with CeD (Dotsenko et al., 2022). ZED1227
effectively inhibited gluten-induced transcriptional alterations, reversed
mucosal abnormalities and inflammation, and standardized cell
differentiation-related gene patterns (Dotsenko et al., 2022). RNA-seq
was used to evaluate the effectiveness of TG2 inhibition in treating
CeD, demonstrating its potential for treating this disease. Another study
employed RNA-seq to investigate the synergistic activation of intestinal
intraepithelial cytotoxic T cells by IL15 and IL21, which resulted in
enhanced transcriptional activity, proliferation, and cytolytic activity
(Ciszewski et al., 2020). RNA-seq revealed the molecular mechanisms of
IL15 and IL21 in CeD and the potential of BNZ-2 therapy. BNZ-2 spe-
cifically suppressed these effects without affecting the effects of IL2
(Ciszewski et al., 2020). Freitag et al. studied the induction of tolerance
in poly(lactide-co-glycolide) nanoparticles encapsulating gliadin protein
(TIMP-GLIA) using RNA-seq and identified differentially expressed
genes in spleen cells (Freitag et al., 2020). A total of 77 genes exhibited
differential expression, 15 of which exhibited statistically significant
differences between TIMP-GLIA and control mice. The pathways
involved include antigen presentation, B-cell activation and differenti-
ation, peptide loading onto MHC II molecules, and T-cell secretion of
cytokines (Freitag et al., 2020). RNA-seq was used to analyze alterations
in signature genes and pathways following resveratrol administration in
individuals with CeD (Yu et al., 2022). Resveratrol, a polyphenol present
in medicinal plants, grapes, and red wine (Chimento et al., 2019), has
demonstrated potential in the prevention and treatment of chronic in-
flammatory diseases by eliminating free radicals and controlling the
activity of different enzymes, such as COX and iNOS (Luca et al., 2020).
The analysis of RNA-seq data revealed that resveratrol downregulated
six genes (Orm1; NrOb2, Fbxo27, Fgf15, Fabp4, and Amy1) and upregu-
lated three genes (Ubd, Lat, and Aire) (Yu et al., 2022). The DEGs were
classified, and subsequent GO enrichment analysis revealed their
involvement in biological processes associated with reactions involving
oxygenated compounds, phylogeny, and organic nitrogen compounds.
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According to KEGG enrichment analysis, the DEGs were primarily linked
to pathways such as PPAR signaling, nitrogen metabolism, AMPK
signaling, and FoxO signaling (Yu et al., 2022). RNA-seq was used to
elucidate the specific molecular mechanisms through which resveratrol
mitigates the symptoms of CeD by modulating specific genes and
pathways.

The application of RNA-seq in therapeutic target identification and
drug mechanism of action may be constrained by the need for gene and
pathway validation, the intricacy of functional implications, limitations
in data analysis, and the necessity of investigating dynamic changes over
time. To overcome these limitations, one could employ validation,
functional studies, advanced data analysis, and longitudinal studies.
Additional investigations are needed to validate the results in human
subjects, as most related studies have focused primarily on cell lines and
individual cells. By utilizing more extensive in vivo models and con-
ducting direct studies on patients, researchers can obtain more pertinent
insights with clinical significance.

6.8. Applications of RNA-seq in relation to dietary interventions

RNA-seq has been used in CeD research to detect early changes in
gene expression caused by gluten in duodenal biopsies; patients who
adhere to a strict GFD still exhibit molecular disease patterns, and a
relationship between gene transcript levels and gluten-induced damage
to the intestinal lining has been identified (Dotsenko et al., 2021).
Moreover, substantial alterations in the transcriptome of immune cells
within CeD lesions were assessed by utilizing single-cell transcriptomic
analysis. Compared with control patients, CeD patients on a GFD
exhibited only partial restoration of their immune landscape (Atlasy
et al., 2022). Another study revealed that a GFD can potentially rectify
imbalanced levels of miRNA and restore miRNA expression to a state
similar to that of unaffected individuals, thereby restoring a normal
intestinal phenotype (Felli et al., 2022). Furthermore, after participants
began a GFD, the expression of six of these miRNAs returned to normal
levels, indicating that these miRNAs may serve as biomarkers for
assessing the response to a GFD (Tan et al., 2021a). Several miRNAs
exhibited abnormal regulation in treated CeD patients, with certain
levels showing a correlation with adherence to a GFD. Over the course of
the diet, the miRNA expression levels of CeD patients treated with some
genes were similar to those of healthy controls (Francavilla et al., 2023).
An RNA-seq study on gluten exposure in individuals with CeD revealed
that gluten exposure significantly increased the activation of both innate
and adaptive immune response pathways (Yohannes et al., 2020). Pa-
tients with CeD, regardless of the treatment they received, exhibited
consistent modifications in pathways related to tight junctions, olfactory
transduction, unsaturated fatty acid metabolism, amino acid meta-
bolism, and microbial infection. An analysis was also conducted to
predict upstream regulators using genes that were differentially
expressed. The analysis revealed that regulators near loci associated
with CeD, particularly SMARCA4 and CSF2, were consistently activated
(Yohannes et al., 2020).

Although RNA-seq has shown promise in dietary interventions
related to CeD, the miRNAs identified as biomarkers for CeD need
further validation in independent studies, and the sensitivity and spec-
ificity of individual miRNA markers should be assessed in larger sample
sets. The small sample size and unavailability of samples for some pa-
tients and healthy controls are also potential limitations. To address
these limitations, larger sample sizes should be considered, and efforts
should be made to ensure the availability of samples from all partici-
pants. Deeper sequencing methods and complementary techniques such
as quantitative PCR could increase the sensitivity and provide a more
robust assessment of gene expression levels. Future research could also
focus on conducting larger-scale studies with a more diverse sample of
CeD patients, investigating the functional activity of identified markers,
exploring the roles of other small noncoding RNAs, and identifying
additional markers for GFD monitoring over time.
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6.9. Immune cell profiling and the immune landscape

RNA-seq, specifically scRNA-seq, has the ability to offer a compre-
hensive understanding of the immune landscape and cellular diversity in
CeD patients. Researchers have employed unbiased scRNA-seq to
investigate the diversity of CD45+ immune cells in the human small
intestine (Atlasy et al., 2022). The study revealed modified myeloid cell
transcriptomes in active celiac lesions, with significant changes in CD4+
and CD8+ T-cell transcriptomes. A diminished native intraepithelial
lymphocyte population was also detected in individuals with CeD. The
immune profile of those with CeD who adhered to a GFD was only
partially regenerated compared to that of control samples (Atlasy et al.,
2022). This study underscores the importance of understanding the key
immune system components in CeD due to its complex disease, as these
components impact both the digestive tract and systemic symptoms.

Researchers have identified gluten-specific CD4+ T cells in CeD pa-
tients, which exhibit distinctive behaviors due to gluten exposure
(Christophersen et al., 2021). Using RNA-seq data and mass cytometry,
they identified markers for identifying pathogenic T cells in CeD. These
markers are crucial for monitoring cells and developing drugs (Chris-
tophersen et al., 2021). The unique nonproliferative characteristics of
gluten-specific CD4+ T cells in CeD have also been recognized using
RNA-seq (Christophersen et al., 2019). Like activated effector memory T
cells, gluten-specific CD4+ T cells also exhibit unique transcriptomic
profiles (Yao et al., 2021). They exhibit varying levels of gene expression
related to T-cell receptor signaling, translation, cell death, fatty acid
transport, and redox potentials (Yao et al., 2021). In a previous study.
During the examination of the transcriptome of CD4+ T cells, IFNy
exhibited the highest level of upregulation in CD patients compared to
controls (Quinn et al., 2015). A study also revealed a robust correlation
between CeD and a cluster of genes regulated by BACH2; confirming the
involvement of BACH2 in T-cell differentiation and the prevention of
autoimmune diseases (Quinn et al., 2015). In the analysis of individual
RNA molecules in peripheral blood mononuclear cells (PBMCs) obtained
from children with CeD, researchers found consistent cell proportions
over time and under various health conditions (Ramirez-Sanchez et al.,
2022). However, there were variations in the expression of genes (e.g.,
CD52, SELL, S100A4, NFKB2, and NFKBIA) within CD4+ T cells between
CeD patient samples before and after disease onset, as well as between
patients and control subjects. This study also identified biomarkers that
can be used to diagnose CeD, particularly in the NK cell compartment
(such as GZMA, GZMM, PRF1, TXNIP, and TAGAP), providing alterna-
tive methods for diagnosing CeD without the need for a biopsy. This
study revealed the importance of TNF pathways in the development and
progression of CeD (Ramirez-Sanchez et al., 2022), highlighting the
potential of scRNA-seq in understanding this process.

A previous study revealed the presence of plasma cells (PCs) in the
small intestinal lesions of patients with active CeD through RNA-seq
analysis (Snir et al., 2019). These PCs include genes that encode in-
flammatory mediators, receptors, costimulatory molecules, and HLA
class II molecules. These cells generate inflammatory cytokines and
chemokines, exhibit responsiveness to environmental stimuli, and
interact with other immune cells, specifically CD4+ T cells (Snir et al.,
2019). Transcriptome analysis of CeD revealed that the autoantigen TG2
has a negligible effect on the transcription of autoreactive B cells (Du Pré
et al., 2020). These results support a model of CeD in which gluten-
reactive T cells assist autoreactive TG2-specific B cells through the for-
mation of gluten-TG2 complexes. This model also highlights a general
mechanism of autoimmunity in which autoantibodies are produced by
uninformed B cells when assisted by T cells (Du Pré et al., 2020). RNA-
seq analysis has also revealed the role of longevity, clonal relationships,
and transcriptional programs in CeD-specific PCs. One study revealed
antigen-dependent V-gene selection and stereotypic antibodies (Linde-
man et al., 2021), and variations in immunoglobulin genes impact the
production of antibodies specific for CeD. The study identified tran-
scriptional variations in short-lived and long-lived PCs specific to CeD
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and found a significant buildup of short-lived CD19+ CD45+ cells in
disease-specific gut plasma cells (Lindeman et al., 2021).

RNA-seq has been used to study the transcriptional activity of IE-
CTLs in response to the cytokines IL15 and IL21 (Ciszewski et al.,
2020). It has also been used to identify DEGs, construct immune infil-
tration networks, and verify the occurrence of pyroptosis. SCRNA-seq
analysis has expanded our understanding of CeD through the explora-
tion of transcriptome profiles in duodenal tissue. y8T cells with high IFN-
y expression have been identified as relevant cells associated with
pyroptosis (Chen et al., 2023). Another study also revealed differences in
the TCR repertoire between individuals in good health and those with
CeD, with specific V-region genes being more commonly used in CeD
(Patrick et al., 2021). Two distinct clusters of CD8+ T cells exhibited
increased activity in individuals with CeD, as indicated by an activated,
cytotoxic transcriptional profile and high expression of immune check-
point molecules and transcription factors (Patrick et al., 2021). Inter-
estingly, RNA-seq analysis revealed KIR+ CD8+ T cells as targeted
eliminators of gliadin-specific CD4+ T cells (Li et al., 2022). A higher
frequency was associated with more severe disease and differential
expression of 963 genes in patients with higher frequencies (Li et al.,
2022).

The studies highlighted limitations in scRNA-seq data, such as
focusing on specific markers and phenotypic changes without consid-
ering functional implications; requiring integration with other omics
data, such as single-cell proteomics or spatial transcriptomics; excluding
noncoding RNAs; not considering different T-cell subpopulations and
time points; and potentially confounding effects of autoantigen expo-
sure. Future research should address these limitations to improve the
understanding and clinical significance of the findings.

7. Conclusions

High-throughput RNA-seq technology has revolutionized the study
of the transcriptome, providing valuable insights into new research
domains. However, there are still limitations in its application in CeD
research. Future research should focus on larger sample sizes, validation
and functional studies, user-friendly analysis tools, improved sensitivity
and dynamic ranges, and validation of findings in larger cohorts. To
improve the quality of RNA-seq experiments, it is crucial to incorporate
an adequate number of biological replicates (Lamarre et al., 2018);
evaluate factors such as effect size, maximum sample size, false-positive
and false-negative results, and within-group variation (Busby et al.,
2013; Wu et al., 2015); and consider sequencing read depth and single-
or paired-end sequencing reads (Stark et al., 2019). Future research
should focus on tissue composition, cell type expression, and multiomic
approaches to better understand CeD pathogenesis and identify new
therapeutic targets. The integration of spatial transcriptomics data with
scRNA-seq data could reveal intricate immune cell networks that
interact with epithelial and stromal cells in CeD pathology.
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