GWAS: Genome-Wide Association Studies
LTL: Leukocyte Telomere Length
MR: Mendelian Randomization
MSP: Multiple Sclerosis Progression
SNP: Single Nucleotide Polymorphism
Introduction
Exposure: LTL | GWAS summary statistics: UK Biobank | Reference paper: Codd et al. 2021
Sample size: 472,174
Ancestry: European
Outcome: MSP | GWAS summary statistics: International Multiple Sclerosis Genetics Consortium (IMSGC) | Reference paper: Harroud et al. 2023
Sample size: 12,584
Ancestry: European
Data Prepration
Number of total SNPs in exposure: 20,134,421 SNPs
Number of SNPs exposure with p-value < \(5\times10^{-8}\): 37,521 SNPs
Number of SNPs exposure after clumping: 150 SNPs
Number of total SNPs in outcome: 7,776,916 SNPs
Number of common variants between exposure and outcome: 138 SNPs
Number of SNPs after harmonization (action=2): 134 SNPs
A total of four SNPs (rs2306646, rs56178008, rs611646, rs670180) were removed due to being palindromic.
Weakness of Instruments
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 29.86 41.22 60.64 114.57 106.58 1105.85
The number of SNPs eliminated through the process of checking for weakness: 0 SNP
Initial MR
## id.exposure id.outcome outcome exposure method nsnp
## 1 RX8hD3 YXaXU2 outcome exposure MR Egger 134
## 2 RX8hD3 YXaXU2 outcome exposure Weighted median 134
## 3 RX8hD3 YXaXU2 outcome exposure Inverse variance weighted 134
## 4 RX8hD3 YXaXU2 outcome exposure Simple mode 134
## 5 RX8hD3 YXaXU2 outcome exposure Weighted mode 134
## b se pval
## 1 0.17407936 0.09337643 0.06450420
## 2 0.15164728 0.07973032 0.05717079
## 3 0.07501956 0.05101686 0.14143029
## 4 0.02420997 0.17578912 0.89066867
## 5 0.13661292 0.09052598 0.13364474
## id.exposure id.outcome outcome exposure method Q
## 1 RX8hD3 YXaXU2 outcome exposure MR Egger 154.4203
## 2 RX8hD3 YXaXU2 outcome exposure Inverse variance weighted 156.2935
## Q_df Q_pval
## 1 132 0.08864073
## 2 133 0.08184527
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 RX8hD3 YXaXU2 outcome exposure -0.003204502 0.002532373 0.2079519
MR-PRESSO Test
## $`Main MR results`
## Exposure MR Analysis Causal Estimate Sd T-stat P-value
## 1 beta.exposure Raw 0.07501956 0.05101686 1.470486 0.1437921
## 2 beta.exposure Outlier-corrected NA NA NA NA
##
## $`MR-PRESSO results`
## $`MR-PRESSO results`$`Global Test`
## $`MR-PRESSO results`$`Global Test`$RSSobs
## [1] 158.7034
##
## $`MR-PRESSO results`$`Global Test`$Pvalue
## [1] 0.079
RadialMR Test
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) 0.07501860 0.05101696 1.470464 0.1414362
## Iterative 0.07501860 0.05101696 1.470464 0.1414362
## Exact (FE) 0.07578144 0.04706587 1.610115 0.1073728
## Exact (RE) 0.07564507 0.05397434 1.401501 0.1633937
##
##
## Residual standard error: 1.084 on 133 degrees of freedom
##
## F-statistic: 2.16 on 1 and 133 DF, p-value: 0.144
## Q-Statistic for heterogeneity: 156.2681 on 133 DF , p-value: 0.0820576
##
## No significant outliers
## Number of iterations = 2
## [1] "No significant outliers"
Standardized Residuals
## integer(0)
Cook’s Distance
“In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. In a practical ordinary least squares analysis, Cook’s distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it would be good to be able to obtain more data points. It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977” (Refernce).
Potential Outliers and Influential SNPs
## rs139795227 rs142426306 rs143190905 rs41304832 rs45604339 rs6536702 rs6751209 rs9419958 rs17803849 rs9878436 rs61748181 rs11584821 rs8006485
MR Analysis After Deleting Outliers and Influential SNPs
## id.exposure id.outcome outcome exposure method nsnp
## 1 RX8hD3 YXaXU2 outcome exposure MR Egger 121
## 2 RX8hD3 YXaXU2 outcome exposure Weighted median 121
## 3 RX8hD3 YXaXU2 outcome exposure Inverse variance weighted 121
## 4 RX8hD3 YXaXU2 outcome exposure Simple mode 121
## 5 RX8hD3 YXaXU2 outcome exposure Weighted mode 121
## b se pval
## 1 0.12519867 0.09680580 0.19841324
## 2 0.14998274 0.08122434 0.06481606
## 3 0.10748784 0.05158760 0.03719672
## 4 0.04011594 0.15860054 0.80074969
## 5 0.11085936 0.09164646 0.22879414
## id.exposure id.outcome outcome exposure method Q
## 1 RX8hD3 YXaXU2 outcome exposure MR Egger 102.7374
## 2 RX8hD3 YXaXU2 outcome exposure Inverse variance weighted 102.7841
## Q_df Q_pval
## 1 119 0.8560318
## 2 120 0.8698709
## id.exposure id.outcome outcome exposure egger_intercept se pval
## 1 RX8hD3 YXaXU2 outcome exposure -0.0005410524 0.002502444 0.8291946
Sensitivity Analyses With MendelianRandomization Package
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 121
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW 0.107 0.052 0.006, 0.209 0.037
## ------------------------------------------------------------------
## Residual standard error = 0.925
## Residual standard error is set to 1 in calculation of confidence interval when its estimate is less than 1.
## Heterogeneity test statistic (Cochran's Q) = 102.7841 on 120 degrees of freedom, (p-value = 0.8699). I^2 = 0.0%.
## F statistic = 106.2.
## Method Estimate Std Error 95% CI P-value
## Simple median 0.027 0.081 -0.133 0.186 0.742
## Weighted median 0.150 0.081 -0.009 0.309 0.064
## Penalized weighted median 0.150 0.081 -0.009 0.309 0.065
##
## IVW 0.107 0.052 0.006 0.209 0.037
## Penalized IVW 0.107 0.052 0.006 0.209 0.037
## Robust IVW 0.097 0.045 0.009 0.185 0.030
## Penalized robust IVW 0.097 0.045 0.009 0.185 0.030
##
## MR-Egger 0.125 0.097 -0.065 0.315 0.196
## (intercept) -0.001 0.003 -0.005 0.004 0.829
## Penalized MR-Egger 0.125 0.097 -0.065 0.315 0.196
## (intercept) -0.001 0.003 -0.005 0.004 0.829
## Robust MR-Egger 0.129 0.073 -0.013 0.272 0.075
## (intercept) -0.001 0.002 -0.006 0.003 0.648
## Penalized robust MR-Egger 0.129 0.073 -0.013 0.272 0.075
## (intercept) -0.001 0.002 -0.006 0.003 0.648
MR Steiger Test of Directionality
| id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
|---|---|---|---|---|---|---|---|
| RX8hD3 | YXaXU2 | exposure | outcome | 0.026743 | 0.0085137 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
Other MR Methods
## MR-RAPS method
## $beta.hat
## [1] 0.1083275
##
## $beta.se
## [1] 0.05212262
##
## $beta.p.value
## [1] 0.03767981
##
## $naive.se
## [1] 0.05187878
##
## $chi.sq.test
## [1] 102.7501
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 0.10832753 0.05212262
## 2 FALSE huber 0.09786823 0.05347324
## 3 FALSE tukey 0.09887664 0.05347365
## 4 TRUE l2 0.10832672 0.05212399
## 5 TRUE huber 0.09786823 0.05347339
## 6 TRUE tukey 0.09887662 0.05347381
##
## MR-Lasso method
##
## Number of variants : 121
## Number of valid instruments : 121
## Tuning parameter : 0.2068065
## ------------------------------------------------------------------
## Exposure Estimate Std Error 95% CI p-value
## exposure 0.107 0.052 0.006, 0.209 0.037
## ------------------------------------------------------------------
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 121
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC 0.109 0.052 0.036 [0.007,0.211]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 121
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW 0.108 0.052 0.006, 0.211 0.037 1157.055
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 121
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE 0.111 0.094 -0.073, 0.295 0.238
## ------------------------------------------------------------------
Introduction
Exposure: MSP | GWAS summary statistics: International Multiple Sclerosis Genetics Consortium (IMSGC) | Reference paper: Harroud et al. 2023
Sample size: 12,584
Ancestry: European
Outcome: LTL | GWAS summary statistics: UK Biobank | Reference paper: Codd et al. 2021
Sample size: 472,174
Ancestry: European
Data Prepration
Number of total SNPs in exposure: 7,776,916 SNPs
Number of SNPs exposure with p-value < \(5\times10^{-5}\): 356 SNPs
Number of SNPs exposure after clumping: 87 SNPs
Number of total SNPs in outcome: 20,134,421 SNPs
Number of common variants between exposure and outcome: 78 SNPs
Number of SNPs after harmonization (action=2): 78 SNPs
Weakness of Instruments
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.51 17.26 18.26 18.95 19.78 32.90
The number of SNPs eliminated through the process of checking for weakness: 0 SNP
Initial MR
## id.exposure id.outcome outcome exposure method nsnp
## 1 nURK4f FheClD outcome exposure MR Egger 78
## 2 nURK4f FheClD outcome exposure Weighted median 78
## 3 nURK4f FheClD outcome exposure Inverse variance weighted 78
## 4 nURK4f FheClD outcome exposure Simple mode 78
## 5 nURK4f FheClD outcome exposure Weighted mode 78
## b se pval
## 1 0.0032548295 0.010215094 0.7508815
## 2 -0.0009435078 0.006504165 0.8846618
## 3 0.0018844096 0.004716133 0.6894757
## 4 -0.0132432167 0.017443670 0.4500515
## 5 -0.0070434241 0.016440723 0.6695463
## id.exposure id.outcome outcome exposure method Q
## 1 nURK4f FheClD outcome exposure MR Egger 89.69824
## 2 nURK4f FheClD outcome exposure Inverse variance weighted 89.72533
## Q_df Q_pval
## 1 76 0.1348173
## 2 77 0.1522365
## id.exposure id.outcome outcome exposure egger_intercept se
## 1 nURK4f FheClD outcome exposure -0.0001344673 0.0008875522
## pval
## 1 0.8799799
MR-PRESSO Test
## $`Main MR results`
## Exposure MR Analysis Causal Estimate Sd T-stat
## 1 beta.exposure Raw 0.00188441 0.004716133 0.3995667
## 2 beta.exposure Outlier-corrected NA NA NA
## P-value
## 1 0.6905819
## 2 NA
##
## $`MR-PRESSO results`
## $`MR-PRESSO results`$`Global Test`
## $`MR-PRESSO results`$`Global Test`$RSSobs
## [1] 92.19636
##
## $`MR-PRESSO results`$`Global Test`$Pvalue
## [1] 0.1522
RadialMR Test
##
## Radial IVW
##
## Estimate Std.Error t value Pr(>|t|)
## Effect (Mod.2nd) 0.001884333 0.004716140 0.3995499 0.6894881
## Iterative 0.001884333 0.004716140 0.3995499 0.6894881
## Exact (FE) 0.002005036 0.004369238 0.4588984 0.6463071
## Exact (RE) 0.001992727 0.005061423 0.3937089 0.6948841
##
##
## Residual standard error: 1.079 on 77 degrees of freedom
##
## F-statistic: 0.16 on 1 and 77 DF, p-value: 0.691
## Q-Statistic for heterogeneity: 89.71399 on 77 DF , p-value: 0.1524308
##
## Outliers detected
## Number of iterations = 2
## SNP Q_statistic p.value
## 1 rs76382044 12.7873 0.0003489804
Standardized Residuals
## [1] 70
Cook’s Distance
“In statistics, Cook’s distance or Cook’s D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. In a practical ordinary least squares analysis, Cook’s distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it would be good to be able to obtain more data points. It is named after the American statistician R. Dennis Cook, who introduced the concept in 1977” (Refernce).
Potential Outliers and Influential SNPs
## rs76382044 rs11759954 rs149413001 rs72740876 rs10191329 rs147807315 rs115687581 rs71566749 rs7243759 rs76162903 rs28469818 rs17401217 rs117783351 rs118038122 rs78154308
MR Analysis After Deleting Outliers and Influential SNPs
## id.exposure id.outcome outcome exposure method nsnp
## 1 nURK4f FheClD outcome exposure MR Egger 63
## 2 nURK4f FheClD outcome exposure Weighted median 63
## 3 nURK4f FheClD outcome exposure Inverse variance weighted 63
## 4 nURK4f FheClD outcome exposure Simple mode 63
## 5 nURK4f FheClD outcome exposure Weighted mode 63
## b se pval
## 1 -0.010356970 0.010710819 0.33738056
## 2 -0.008930759 0.006785595 0.18812872
## 3 -0.010222232 0.004900368 0.03697743
## 4 -0.018740708 0.015374316 0.22747616
## 5 -0.016101339 0.016170798 0.32326393
## id.exposure id.outcome outcome exposure method Q
## 1 nURK4f FheClD outcome exposure MR Egger 34.48608
## 2 nURK4f FheClD outcome exposure Inverse variance weighted 34.48628
## Q_df Q_pval
## 1 61 0.9975517
## 2 62 0.9982103
## id.exposure id.outcome outcome exposure egger_intercept se
## 1 nURK4f FheClD outcome exposure 1.270949e-05 0.0008983854
## pval
## 1 0.9887588
Sensitivity Analyses With MendelianRandomization Package
##
## Inverse-variance weighted method
## (variants uncorrelated, random-effect model)
##
## Number of Variants : 63
##
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## IVW -0.010 0.005 -0.020, -0.001 0.037
## ------------------------------------------------------------------
## Residual standard error = 0.746
## Residual standard error is set to 1 in calculation of confidence interval when its estimate is less than 1.
## Heterogeneity test statistic (Cochran's Q) = 34.4863 on 62 degrees of freedom, (p-value = 0.9982). I^2 = 0.0%.
## F statistic = 18.8.
## Method Estimate Std Error 95% CI P-value
## Simple median -0.011 0.007 -0.024 0.002 0.103
## Weighted median -0.010 0.007 -0.023 0.003 0.133
## Penalized weighted median -0.010 0.007 -0.023 0.003 0.133
##
## IVW -0.010 0.005 -0.020 -0.001 0.037
## Penalized IVW -0.010 0.005 -0.020 -0.001 0.037
## Robust IVW -0.010 0.005 -0.019 -0.001 0.031
## Penalized robust IVW -0.010 0.005 -0.019 -0.001 0.031
##
## MR-Egger -0.010 0.011 -0.031 0.011 0.334
## (intercept) 0.000 0.001 -0.002 0.002 0.989
## Penalized MR-Egger -0.010 0.011 -0.031 0.011 0.334
## (intercept) 0.000 0.001 -0.002 0.002 0.989
## Robust MR-Egger -0.008 0.010 -0.027 0.010 0.385
## (intercept) 0.000 0.001 -0.002 0.002 0.878
## Penalized robust MR-Egger -0.008 0.010 -0.027 0.010 0.385
## (intercept) 0.000 0.001 -0.002 0.002 0.878
MR Steiger Test of Directionality
| id.exposure | id.outcome | exposure | outcome | snp_r2.exposure | snp_r2.outcome | correct_causal_direction | steiger_pval |
|---|---|---|---|---|---|---|---|
| nURK4f | FheClD | exposure | outcome | 0.0939917 | 8.2e-05 | TRUE | 0 |
## $r2_exp
## [1] 0
##
## $r2_out
## [1] 0.25
##
## $r2_exp_adj
## [1] 0
##
## $r2_out_adj
## [1] 0.25
##
## $correct_causal_direction
## [1] FALSE
##
## $steiger_test
## [1] 0
##
## $correct_causal_direction_adj
## [1] FALSE
##
## $steiger_test_adj
## [1] 0
##
## $vz
## [1] NaN
##
## $vz0
## [1] 0
##
## $vz1
## [1] NaN
##
## $sensitivity_ratio
## [1] NaN
##
## $sensitivity_plot
Other MR Methods
## MR-RAPS method
## $beta.hat
## [1] -0.01052871
##
## $beta.se
## [1] 0.005258478
##
## $beta.p.value
## [1] 0.04525951
##
## $naive.se
## [1] 0.0051133
##
## $chi.sq.test
## [1] 34.35666
## over.dispersion loss.function beta.hat beta.se
## 1 FALSE l2 -0.01052871 0.005258478
## 2 FALSE huber -0.01029138 0.005394124
## 3 FALSE tukey -0.01027701 0.005394077
## 4 TRUE l2 -0.01052843 0.005261579
## 5 TRUE huber -0.01029175 0.005395310
## 6 TRUE tukey -0.01027739 0.005395303
##
## MR-Lasso method
##
## Number of variants : 63
## Number of valid instruments : 63
## Tuning parameter : 0.2100587
## ------------------------------------------------------------------
## Exposure Estimate Std Error 95% CI p-value
## exposure -0.010 0.005 -0.020, -0.001 0.037
## ------------------------------------------------------------------
##
## Constrained maximum likelihood method (MRcML)
## Number of Variants: 63
## Results for: cML-MA-BIC
## ------------------------------------------------------------------
## Method Estimate SE Pvalue 95% CI
## cML-MA-BIC -0.010 0.005 0.036 [-0.020,-0.001]
## ------------------------------------------------------------------
##
## Debiased inverse-variance weighted method
## (Over.dispersion:TRUE)
##
## Number of Variants : 63
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value Condition
## dIVW -0.011 0.005 -0.021, -0.001 0.037 141.164
## ------------------------------------------------------------------
##
## Mode-based method of Hartwig et al
## (weighted, delta standard errors [not assuming NOME], bandwidth factor = 1)
##
## Number of Variants : 63
## ------------------------------------------------------------------
## Method Estimate Std Error 95% CI p-value
## MBE -0.016 0.015 -0.046, 0.014 0.287
## ------------------------------------------------------------------